
Triana User Guide

The Triana Team

Contents

1 Overview 1
1.1 Introduction . 1

2 Getting Started 4
2.1 Download, Installation and Configuration 4
2.2 The Triana User Interface . 5

2.2.1 The Toolbox Window . 5
2.2.2 Main Menus and Tool Bars 10
2.2.3 The Main Triana Window 11

2.3 Your First Workflow . 15
2.4 Grouping Tasks . 18
2.5 Using Parameters Within Triana . 20

2.5.1 The Node Editor . 21
2.5.2 An Example with Parameters 23

2.6 Configuring Triana Options . 25
2.6.1 Options Configuration Window 25

2.7 Getting Help . 28

3 Distributed Computing with Triana 29
3.1 Overview . 29
3.2 Web Services . 31

3.2.1 Web Service Configuration 31
3.2.2 Discovering Web Services 32
3.2.3 Importing Web Services . 33
3.2.4 Conncecting Web Services 33
3.2.5 Bible Translation Example 34
3.2.6 Complex Data Types . 36
3.2.7 Deploying Web Services . 37

3.3 P2PS . 39
3.3.1 P2PS Configuration . 39

i

3.3.2 Deploying P2PS Services 40
3.3.3 Discovering P2PS Services 41
3.3.4 Connecting P2PS Services 41

3.4 GridLab GAT . 42
3.4.1 Example GAT Worfklow . 42
3.4.2 GAT Configuration . 43
3.4.3 Job Submission . 44
3.4.4 File Transfer . 46

4 Extending Triana 48
4.1 CVS Access . 48

4.1.1 Conventions . 49
4.1.2 CVSRoot and Passwords . 49
4.1.3 Tagged, Stable and Unstable Versions 49
4.1.4 A Word About Directory Structure 49
4.1.5 Easy Install . 50
4.1.6 Developer Install . 52
4.1.7 Other Install . 54

4.2 Writing Your Own Tools . 54
4.2.1 Toolbox Structure . 54
4.2.2 Creating a New Toolbox . 55
4.2.3 Using the Unit Wizard . 57
4.2.4 Compiling Units/Generating Tool XML 63

4.3 Advanced Tool Techniques . 64
4.3.1 Showing and Hiding a Unit’s Parameter Panel 64
4.3.2 Pausing Unit Execution . 64

4.4 Trouble Shooting . 68
4.4.1 Triana Resource Directory 68

ii

List of Figures

2.1 MainTriana User Interface . 5
2.2 Toolbox Window . 6
2.3 Tool Tree Icons . 6
2.4 Sorting by Sub-packages . 8
2.5 Filter Toolbox by Data Types . 8
2.6 Simple Taskgraph . 15
2.7 Instantiated Wave Tool . 16
2.8 Instantiated Wave and Graph Tool 16
2.9 Grapher Interface . 17
2.10 Grapher Interface . 18
2.11 New Group Box . 19
2.12 New Group Box . 19
2.13 New Group Tool Parameter Window 20
2.14 Node Editor . 21
2.15 Parameter List Interface . 22
2.16 Parameter Connection . 23
2.17 Parameter Node . 24
2.18 Options Window - general settings 25
2.19 Options Window - external tools 27
2.20 Selecting the Unit Classpath . 28

3.1 Distributed Component Middleware within Triana. 30
3.2 Web Service Configuration Dialog. 32
3.3 Web Service tools in the Tool Tree. 33
3.4 Using StringGen and StringViewer to provide input to and dis-

play the output from a temperature conversion web service. . . . 34
3.5 A simple bible translation workflow. 35
3.6 Generating/viewing complex data types using WSTypeGen and

WSTypeViewer. 36
3.7 Dialog for deploying a task/group task as a web service. 38

iii

3.8 Using xsd tools to ensure standard input/output XML types are
used when deploying a web service. 38

3.9 Dialog for deploying a task/group task as a P2PS service. 40
3.10 Example GAT workflow. 42
3.11 Job Properties Dialog. 44
3.12 Inputs Panel in the Job Properties Dialog. 45
3.13 File Transfer Operations. 46

4.1 example build.properties file . 54
4.2 Edit Toolbox Paths . 56
4.3 Unit Panel in the Unit Wizard. 57
4.4 Data Type Panel in the Unit Wizard. 59
4.5 Parameter Panel in the Unit Wizard. 60
4.6 GUI Panel in the Unit Wizard. 61
4.7 Final Panel in the Unit Wizard. 62
4.8 Compile Unit/Generate Tool XML Dialog. 63

iv

List of Tables

2.1 Common Contextual Tool Menu Items 9
2.2 Contextual Tool Menu Items . 9
2.3 Menu Commands . 10
2.4 Tool Bar Commands . 11
2.5 Main Window Tool Menu . 12
2.6 Main Window Multiple Tool Menu 13
2.7 Main Window Group Tool Menu 13
2.8 Main Window Background Menu 13
2.9 General Options . 26

4.1 Trouble Shooting Symptoms . 68

v

Chapter 1

Overview

1.1 Introduction

Triana is a graphical environment that allows you to create powerful computer
programs and to use them, with a minimum of effort and no programming.
Using Triana, you simply assemble your program from a set of building-blocks
that you drag into a work-space window and connect up using your mouse.
With a click of the mouse the program will perform whatever operations you
want. You can tell Triana to execute your program just once or continuously, as
long as data is available to it.

Since Triana is written in pure Java, it will run on almost any computer, and you
can share your work with colleagues who work on different kinds of computers.
Triana is a revolutionary new way to expand the number of things you can
do on your computer. It allows you to create serious and complex programs
without dealing with programming languages, compilers, debuggers, and error
codes.

• Use Triana on a wide variety of data: numerical data, either taken from an
experiment or generated by Triana; audio data; images; even text files.

• Triana comes with a wide variety of built-in tools. There is an extensive
signal-analysis toolkit, an image-manipulation toolkit, a desk-top publish-
ing toolkit, and many more. Most Triana tools will show you a parameter
window, so you can adjust the way they work. Parameters can typically
be changed dynamically, without interrupting the flow of data.

• Triana will display your data, either in a text-editor window or in a versatile

1

graph-display window. The grapher will display several curves at once
and will allow you to zoom in on interesting features and mark them.

• Triana is particularly good at automating repetitive tasks, such as per-
forming a find-and-replace on all the text files in a particular directory, or
continuously monitoring the spectrum of data that comes from an exper-
iment that runs for days or even years. If you run an experiment, Triana
can help you save the cost of buying extra expensive oscilloscopes or spec-
trum analyzers: just let your laptop or lab PC do the job. If you maintain
a web site you will find you can automate many of your tedious updating
tasks. If you are a teacher, you can simplify the maintenance of student
records and the grading of papers. If you regularly create reports, Triana
will allow you to feed updated data directly into the finished document,
no matter how it is formatted.

• Triana is a wonderful assistant in the classroom or teaching laboratory. It
can help you to make demonstrations of analysis techniques, to generate
simulated experimental data, to display graphs of complicated functions.

• If the tools supplied with Triana do not do what you need, Triana contains
a wizard that helps you to create new ones, with parameter windows. Or
you can use tools that are available on another web site, directly over the
Internet, without having to copy them to your computer.

• Triana includes many features to ensure that your programs should work
as you want them to. It checks data types and tells you if you have con-
nected up tools that are not compatible. It gives you clear error messages
if problems arise during the run and offers advice on how to avoid the
situation. You can easily insert display units to monitor intermediate re-
sults and track down more subtle errors. Triana traps serious errors so the
program will not crash; at worst you need only restart the calculation.

Triana is being developed by scientists at Cardiff University in the UK. They
are working within the GEO600 gravitational wave experiment, a major physics
collaboration between scientists from Germany, Britain, and other countries.
GEO600 will generate many terabytes of numerical data each year, and Triana is
designed to make it possible for scientists in the project to examine this data in
a simple and versatile way. Triana is in use within GEO600 and in other major
centers of research in the USA and Europe. The release version of Triana will
take the same principles of easy operation and versatility, and extend them to a
variety of types: image, sound, text, and numerical data.

But you don’t have to be a rocket scientist to use Triana. Like the internet, email,

2

the web, and web browsers, Triana is another tool initially created for scientists
that has very much wider use. Triana opens programming to people who don’t
know a programming language.

3

Chapter 2

Getting Started

2.1 Download, Installation and Configuration

Step 1 - Download
Download the latest Triana release from http://www.trianacode.org.

Step 2 - Set Environment Variable
Set an environment variable for your system, $TRIANA for Unix like systems
or %TRIANA% for Windows, to point the top level triana directory, the
location that you saved and unpacked the download to.

e.g. (from the command prompt)

set TRIANA=C:\triana Windows
setenv TRIANA=/home/user/triana unix - tcsh
export TRIANA=/home/user/triana unix - bash

Step 3 - Build Triana
Run the Triana build script (buildTriana), which is located in the
triana/bin directory.

e.g. (from the command prompt)

C:\triana\bin\buildTriana.bat Windows
/home/user/triana/bin/buildTriana unix

Step 4 - Run Triana
Run Triana using the triana script located in the
triana/bin directory.

4

e.g. (from the command prompt)

C:\triana\bin\triana.bat Windows
/home/user/triana/bin/triana unix

2.2 The Triana User Interface

The Triana User Interface, figure 2.1 consists of a number of main compo-
nents.

Figure 2.1: MainTriana User Interface

2.2.1 The Toolbox Window

The Toolbox Window allows you to explore the Triana toolboxes and navigate
through the toolbox hierarchies. It is easy to view the toolbox contents simply
by double clicking the toolbox name or the corresponding pointers. Contextual
menus are available by “right clicking” on toolboxes or tools and a search entry
allows for easy location of tools. The Triana Toolbox Window figure 2.2 consists

5

of a tree component with branches representing toolboxes and sub-toolboxes,
leaf nodes representing tools or components.

Figure 2.2: Toolbox Window

There are a number of different icons that represent different types of tools, these
are can be seen in figure 2.3

Figure 2.3: Tool Tree Icons

The icons represent different tools with toolboxes, the top “folder” icon repre-
sents a toolbox.

1. Standard tool.

2. Group tool, a number of other tools combined and saved as a new group.

3. Broken tool, a tool that cannot be instantiated on a main window. Typically
because it has not been compiled.

4. File, a special tool that represents a file object, either locally or remotely.

6

5. Job, a special tool for representing a job object for job submission purposes.

6. Script, a special type of group tool that can act on other tools.

7. List, a representation of a list of objects.

8. Service, a proxy component to a remote service such as a web service.

Searching

The combined search control at the top of the toolbox window has multiple
functions. In text search mode, typing part or all of a component’s name and
hitting enter will search all of the toolbox paths for matches and display any
matches in place of the normal tool tree.

The search control is also a “drop down list” with six items which are all tool
filters for displaying a filtered view of the toolboxes:

• All Packages (default) returns the tool tree view to its default.

• Sub-Packages shows all the sub-packages of all the Triana toolboxes in
alphabetical order as shown in figure 2.4(a). When clicked on a particular
sub-package it points to the corresponding toolboxes (main packages that
contains this sub-package). For example in the figure 2.4(b), we can see
that the Input sub-package points to all the toolboxes that contain Input
sub-package, such as the Input sub-package of the Audio toolbox/package.

• All Tools expands all toolboxes and sub-toolboxes so that all the tools or
components are shown.

• Input Tools is a special form of Sub-Packages filter that shows all of the
tools that are contained in any sub-toolbox called Input. This is a fast way
of finding all tools that are capable of generating data for the start of a
workflow.

• Output Tools is the corresponding filter that displays only tools from
Output toolboxes. These are the tools that are designed to display or
output the results of a workflow.

• Data Type Tools when selected gives you a popup menu as shown in
figure 2.5 below. In this menu select the Triana Data Types by which to filter
the toolbox view. Select the required data types from the menu and press
the “Ok” button. Triana will filter the tools which contains those selected
data types. Select All Tools to view the tree.

7

(a) Sub-packages (b) Expanded

Figure 2.4: Sorting by Sub-packages

Figure 2.5: Filter Toolbox by Data Types

8

Toolbox Contextual Menus

The contextual menus for tools and toolboxes are accessed by “right clicking”
(control clicking on Mac OS X) on the tool or toolbox icon in the toolbox window.
The menus vary dependant upon the item chosen:

• All tools and toolboxes have a common set of editing functions in the
menu, see table 2.1, these are explained in more detail in the section on
editing toolboxes on page ??.

Menu Item Description
Cut Cut the selected tools to the clipboard.
Copy Copy the selected tools to the clipboard.
Paste Paste the tools in the clipboard to the current toolbox.
Delete Cut the selected tasks.
Rename Rename the selected task.

Table 2.1: Common Contextual Tool Menu Items

• The pop-up menu for a single tool has in addition to the common editing
functions the following menu items in table 2.2, see section 4.2 for a detailed
description.

Menu Item Description
Edit Tool Description Edit the tool tip shown when the mouse is over this

tool.
Edit Source Edit the source code for this tool in the default text

editor.
Edit HTML Help Edit the help file in the default editor.
Edit XML Definition Edit the XML tool definition file in the default editor.
Compile Bring up the compile wizard for this tool.
Help Show the help for this tool.

Table 2.2: Contextual Tool Menu Items

• Group tool menus are similar to a single tool menu except that the Edit
Source menu item is removed and instead there is a Open menu item that
will open the group in a new main Triana window.

• There are some specialist menus for File, Job and List tools that are discussed
in chapter 3

9

2.2.2 Main Menus and Tool Bars

You can use Menus and Toolbar to give Triana instructions about what you want
to do. The Tool Bar is a collection of frequently used commands or options that
appear as two rows of tools.

The Main Menu

The main menu system, outlined in table 2.3, displays a list of commands.

Menu Group Description
File This is a standard menu group and most of the commands

are provided in the Toolbar.
Edit This menu group common commands like for selecting,

grouping and ungrouping tasks.
Run Contains start, stop and reset functions for constructed work-

flows.
Tools This menu group allows you to make you own tools and also

allows you to compile and generate XML file of you new tools.
Services If Triana is running in a distributed mode (see chapter 3) then

this menu provides the functions for discovering and creating
remote services.

Options Allows for configuration of Triana options (see section 2.6)
such as auto connect, if you select this, your tasks dragged on
the main triana window will be automatically connected by
the cable.

Window This adjusts the view of the main Triana windows or
workspaces. Cascade or tile open Triana windows so that you
can view them all.

Help Under this menu group you can find comprehensive guidance
for Triana. It includes reference to Triana’s class packages, you
can also search for usage and functions of all the Triana tools
via find tools command and other tutorials to get started with
Triana.

Table 2.3: Menu Commands

Some of the commands have images which indicate that they can be accessed

10

from the tool bar and short cut keys1 which can be accessed anywhere. Many
of the commands available from the menu can be also called with the help of
popup menus directly from the main Triana Window (see section 2.2.3).

The Tool Bars

The main toolbar contains buttons with images, hovering the mouse over a tool
bar item will display its function. The buttons are grouped by functionality and
are outlined in table 2.4 looking left to right and top to bottom:

Group Description
File group New, Open, Save, Save As: these buttons work with taskgraphs

to enable work to be saved to file and opened again.
Edit group Copy, Cut, Paste, Select All, Delete: these buttons enable editing

of tools in a taskgraph.
Help group Find, Print, Options, Help: these buttons enable help searching,

screen shot printing, options and help functions.
Run group Run, Run Recorded, Stop, Reset, Flush: these buttons enable the

execution and halting of the front most Triana Main Window.
Task group Show Properties, Group, Ungroup: Show properties displays the

parameter panel user interface for the tool in the main Triana
window, group and ungroup combine all selected tools into a
compound tool and back again.

Zoom group Zoom In, Zoom Out: these buttons change the size of the task-
graph in the main Triana window making everything smaller
or larger for easier viewing.

Table 2.4: Tool Bar Commands

2.2.3 The Main Triana Window

The Main Triana Window is a workspace for constructing programs by dragging
and dropping the tools from the toolboxes. Tasks are the components that can be
graphically connected to create a particular data flow algorithm. The connection
between tasks is made by dragging a cable from the output node (right-hand

1short cut keys are platform specific keyboard combinations that can be accessed without
using the menu system. Cut, Copy and Paste are good example that use the standard keys for
the operating system (control C for copy on Windows

11

side) of the sending task to the input node (left-hand side) of the receiving task.
Once a network has been created it can be executed.

Main Triana Window Contextual Menus

Like most user interface components in Triana the main window for constructing
workflows has contextual pop-up menus. These are accessed by “right clicking”
(control clicking on Mac OS X) on the window. The menus vary dependant on
where the mouse is clicked:

• Clicking on a tool icon will display the contextual tool menu contents in
table 2.5:

Menu Item Description
Properties Display the parameter panel interface.
Node Editor Display the node editor. Page 21
Run Continuously Run this unit in continuous mode.
Auto Save History Automatically save the history for the selected unit.
Save History Save the history for the selected unit.
Create Service Create a service from the selected unit.
Run Script Run a script on the selected unit.
Cut Cut the selected tasks to the clipboard. Page 14
Copy Copy the selected tasks to the clipboard. Page 14
Delete Cut the selected tasks. Page 14
Paste Into Paste the tasks in the clipboard to the current window.

Page 14
Rename Rename the selected unit.
Help Display the help file for the selected task. Page 28

Table 2.5: Main Window Tool Menu

• Clicking on multiple selected tools, section 2.4, will show a similar menu
but with some additional items added and many of the previous ones
removed, table 2.6.

• Clicking on a group tool, section 2.4, will show a similar menu but with
some additional items added and some previous ones removed, table 2.7.

• Clicking on the window background will display the final menu, table 2.8

12

Menu Item Description
Group Turn the selected tasks into a new group task. Page 18
Cut Cut the selected tasks to the clipboard. Page 14
Copy Copy the selected tasks to the clipboard. Page 14
Paste Into Paste the tasks into the tool tree. Page 14
Delete Cut the selected tasks. Page 14

Table 2.6: Main Window Multiple Tool Menu

Menu Item Description
View Group Display the contents of this group in a new main Triana

window. Page 18
Properties Display the parameter panel interface.
Control Properties Display the control properties dialog.
Ungroup Return this group to its constituent parts. Page 18
Create Service Create a service from the selected tasks.
Run Script Run a script on the selected tasks.
Cut Cut the selected tasks to the clipboard. Page 14
Copy Copy the selected tasks to the clipboard. Page 14
Delete Cut the selected tasks. Page 14
Paste Into Paste the selected tasks into the tool tree. Page 14
Rename Rename the selected unit.

Table 2.7: Main Window Group Tool Menu

Menu Item Description
Group Editor Display the group editor dialog. Page 18
Resolve Group Nodes Checks for unconnected nodes in a group.
Save Saves the current workflow.
Select All Selects all tasks in the window. Page 14
Paste Paste the tasks in the clipboard to the current win-

dow. Page 14

Table 2.8: Main Window Background Menu

13

Editing Workflows

A workflow on a main Triana window is not fixed. Just as if it were a document
in a text editor the workflow, the connections and the components within it can
all be edited. Cut, Copy and Paste commands all work and connections can be
deleted and redrawn.

Selecting Tasks Clicking on the task once with the mouse in the main Triana
window will highlight the particular icon. This means that it is selected. Mul-
tiple tasks can be selected by holding down the control key (command on OS X)
and selecting the tasks or by “rubber banding”2 the required tasks. You can do
a number of things with selected tasks, for example:

• they can be deleted

• they can be moved

• they can be copied and pasted into the workspace (for multiple repetition
of particular group of tasks)

• they can be copied and pasted into the tool tree (for creating stored copies
of the task and its current parameters)

• they can be grouped into a composite task (group task)

Copying Tasks You can copy tasks by selecting the tasks you wish to copy
and then choose the Copy option from either the main Triana window’s popup
menu (right-click on one of the tool icons) or the Copy option on the Edit menu.
TIP : if you select several tasks for copying from the Main Triana window then
the tasks will get copied but NOT the connections. If you wish to copy a selection
of tasks along with the connections then make a group out of the tasks first and
then copy the group.

Pasting Tasks Once a copy operation has taken place selecting Paste will paste
a copy of the tasks to the current window. The Paste option can be found either
in the window’s popup menu (right-click on one of the tool icons) or by the
Paste option on the Edit menu. If the tools are pasted into the tool tree, a stored
version of the tool with the current parameters will be created. This new tool
will appear in the tool tree and can be reused at a later date.

2rubber banding is the term given to dragging the mouse on a screen area which creates a
thin box line around all of the items within the given area

14

Deleting Tasks You can delete tasks by selecting the tasks you wish to delete
and then choose the Delete option from either the window’s popup menu (right-
click on one of the tool icons) or the Delete option on the Edit menu. Alternatively,
to delete any single task use the Task’s popup window (right-click on the Task’s
icon) and select the Delete option.

Moving Tasks You can move multiple tasks by selecting the tasks you wish to
move and then whilst holding down the control or command key drag the tasks
to where you want them to be on the window.

2.3 Your First Workflow

This section will demonstrate how to create and run the simple taskgraph shown
in figure 2.6.

Figure 2.6: Simple Taskgraph

Lets take a closer look on how we make this connection by creating this network
step by step.

1. In the tool tree, navigate to the SignalProc toolbox, open that toolbox by
“double clicking” the toolbox or using the open branch control by the
side of the toolbox, you should see all the sub-toolboxes within it. Now
navigate to the Input toolbox and open that to reveal the tools.

15

2. Now select the Wave task and drag it from toolbox tree window and drop
it on the left hand side of the main Triana window. After dropping the
wave task in the Triana workspace it should look like figure 2.7

Figure 2.7: Instantiated Wave Tool

Note: you can move the tasks around the main Triana window in exactly
the same way i.e. by dragging them to the new location.

3. Similarly, put the SGTGrapher task, a graph displayer, on the main Triana
window. This task can be found in the Output toolbox within the SignalProc
toolbox. Henceforwards written as SignalProc/Output. You should see the
main window look as figure 2.8.

Figure 2.8: Instantiated Wave and Graph Tool

16

4. Now, connect the Wave task and the SGTGrapher task by dragging the cable
from the output node of the Wave task and join it to the input node of the
SGTGrapher. Which will give you the complete workflow shown in the
first figure, figure 2.6

5. Press the Run tool bar button or the menu item Run under the Run menu.
You should see small blue “execution indicators” flash on and then off
each of the tasks. If you have a very fast computer these may flash on and
off almost too quickly to see.

6. Display the SGTGrapher parameter panel user interface either by “double
clicking” the tool in the main Triana window or using the contextual menu
on the tool and selecting the properties item. The contextual menu is a
pop-up menu that is accessed by “right clicking” on WindowsTM or Linux
operating systems and “Command Clicking” on Apple OS XTM, see section
2.2.3. The interface for SGTGrapher should look like figure 2.9.

Figure 2.9: Grapher Interface

7. The form of the graph can be changed by changing the input parameter in
the Wave task. Display the parameter panel interface by “double clicking”
or using the Properties contextual menu on the Wave icon in the main Triana
window. You should see the panel in figure 2.10.

8. Change the frequency to 800 hertz and click apply. Then, click on the run
button and view the wave type in the SGTGrapher display, by repeating
steps 5 and 6. You can view the graph display change as you change the
frequency by moving the scroller, clicking apply and thenrun again.

Note: It is important that the Apply button is pressed after parameter values
have been changed or the changes will not be set. An alternative is to select
the Auto Commit check box at the bottom of a parameter panel. Checking this
option forces changes to parameters to be set automatically and immediately
this may have unexpected results for some workflows. Clicking the OK button
applies all parameter changes and closes the parameter panel.

17

Figure 2.10: Grapher Interface

2.4 Grouping Tasks

In Triana, tasks can be grouped and then saved to toolbox files for later use.
Grouped tasks are flexible because they appear as any other Triana task and can
be used in the same way. Therefore, grouped tasks can be used to build new
tasks from existing components without needing to write any java code!

Let us group the tasks from the network that was created in section 2.3, page
15, “Your First Workflow”. To demonstrate how we do this we shall convert the
taskgraph in figure 2.6, page 15 into a group task called WaveView.

Lets take a closer look on how we do this step by step.

1. First Step is to select the tasks that are to be grouped. There are 3 ways
different ways to select:

(a) Groups of tasks can be selected by “rubber banding” the tasks. Click
on the back ground of the main Triana window above and left of the
tasks and drag a rubber banding area over the tasks. When the tasks
are selected their colour turns slightly darker.

(b) Bring up the popup menu of the main Triana window by clicking
once on the empty space of the main Triana window with the right
mouse button. And choose Select All option.

(c) Select Edit from the Menu bar and choose Select All option.

2. Group the selected tasks either by selecting:

(a) Edit option of the menu bar and choose the Group option.

18

(b) Press the Group tasks button in the tool bar.

(c) Use the contextual menu on one of the selected tools by “right click-
ing” or “command clicking” on the tool icon and selecting the Group
option.

A New Group box will appear where you can enter any name for the new
group. See figure 2.11

Figure 2.11: New Group Box

3. Enter the name WaveView and click OK. A new main Triana window will
be created containing our new group. See figure 2.12 The name of the

Figure 2.12: New Group Box

New Group is now changed to WaveView. Another window is showing
the tasks which were grouped to make the new task WaveView.

19

Note: You can close the WaveView window showing the individual tasks,
to reopen it select the WaveView task and right click the mouse and choose
View Group.

4. Run the new group task by making sure its main Triana window is the
front most and running in the normal manner. To see the result, double
click or use the contextual menu on WaveView to bring up the parameter
panel. The panel for group tasks presents each of the contained task’s
panels in a tabbed interface. Select each tab to see the user interface for
each task. This can be seen in figure 2.13

Figure 2.13: New Group Tool Parameter Window

2.5 Using Parameters Within Triana

Note: This section assumes that you have read and understood, section 2.3 on
creating and running your first workflow.

Triana makes a distinction between parameters and data. Most components and
workflows in Triana are data driven with producer components generating data
objects that fow through communication channels to the consumer component
next along in the workflow. A parameter is a special type of data message that
is normally used for communication between a task and its parameter panel. In
a distributed computing setting the user interface for a component may not be
running on the same computer as the task so the communication between them
in Triana is decoupled and based around messages.

Parameters can also be used by users to pass settings or information that are
not strictly a generated data results from one component to another. In chapter
4 we will look at parameters in more detail and how they can be used by

20

unit programmers. This section will cover the use of parameters from a users
perspective.

Parameters can be input or output from every task within Triana. Triana auto-
matically detects all the parameters which a task uses and makes them available
to the user. For example, let’s demonstrate this by creating a network in which
one Wave task controls another Wave task’s frequency.

Note: In Triana parameters are output after the process function has been run
(i.e. output after the data from the task) and parameters are input before the
process function has been run. This means that you can send a parameter from
a calculation in your process function of one task and the receiving task will
receive this before it receives its data to process. This is extremely useful, for
example, for re-constructing data sets when you need to know how beforehand
how many you will want to concatenate.

2.5.1 The Node Editor

The Node editor in Triana is the mechanism by which the user can change the
input and outputs to and from a task, subject to constraints placed by the task
designer (see chapter 4). The editor is displayed by using the selecting the Node
Editor option from a task’s pop-up menu, page 12.

The user interface consists of three three tabbed windows, which can be see in
figure 2.14. The first tab, figure 2.14(a), allows the user to change the number

(a) editing data nodes (b) editing output parameters

Figure 2.14: Node Editor

of input and output nodes for the task. In this case we can see that for the

21

Wave: Node Editor changing the number of input nodes has been disabled. This
constraint has been set by the writer of the Wave tool. The user can change the
number of outputs by selecting the desired value from the drop down list. Once
Apply or OK has been pressed then the number of outputs on the task will be
changed to reflect the new number.

Note: In Triana if the number of output nodes from a task is increased this
means that when the task outputs its data, multiple copies of the data object are
sent. One copy from each output node.

The second and third tabs, the third is shown in figure 2.14(b) allow the user to
control a task’s input and output parameters. By default no task parameters are
output from or used as input to another task. However all of the parameters that
the task programmer has used in the user interface, for instance, are available
to use as parameters.

To add a parameter as an output to the task, select the Out Params tab, press the
Add button and choose one of the listed parameters. See figure 2.15. Here the

Figure 2.15: Parameter List Interface

user has selected the frequency output parameter for the Wave task. Adding an
input parameter is exactly the same process using the In Params tab.

Note: As in the case of changing the number of input and output nodes. Access
to parameters is constrained by the unit programmer. If a parameter does not
appear in the list then it has not been made externally accessible. See chapter
4.

22

Node Editor Shortcuts

There is a short cut for increasing and decreasing the number of input and output
data nodes for any task on a main Triana window. If you hover the mouse over
the a task icon and the Show Node Increase/Decrease Icons setting is set, see page
26, then you should see + and − symbols flash on. Clicking on the left hand
side symbols will increase or decrease the number of input nodes, clicking on
the right hand side will do the same for output nodes.

Note: As with the Node Editor long hand method of changing the number of
nodes this is only enabled where the unit programmer has specified it. For many
tasks it does not make sense to allow multiple input nodes for instance.

2.5.2 An Example with Parameters

In this tutorial we will create the following network (the Wave tasks can be found
in SignalProc/Input and the Grapher is in SignalProc/Output). The connection
between the two Wave tasks is a parameter connection (see figure 2.16). The first
Wave task is outputting a parameter and the second Wave1 task is receiving this
parameter. In this case the parameter is the frequency of the waveform.

Figure 2.16: Parameter Connection

Let’s take a closer look on how we make this connection by creating this network
step by step.

23

1. Instantiate two instances of the SignalProc/Input/Wave tool onto a new main
window by either dragging the tool from the toolbox twice or dragging
one and then copy and pasting. See pages 15 and 14 for more information.

2. Select the first of the two Wave tasks and bring up the Node Editor by
selecting the option from the pop-up menu, see the previous section on
page 21.

3. In the first tab, Nodes, set the output node count to 0. We don’t need to
output any data from this task for this example.

4. Change to the third tab, Out Params. Click on Add button, this will allow
you to choose the parameter which will be output from the first parameter
output node on the Wave task. Select the frequency parameter and click
OK. This will added a parameter node to the output of the Wave task.
Parameter nodes are recognised by a white circle in the centre of the node
as can be seen in figure 2.17.

Figure 2.17: Parameter Node

5. Now, do the same for the Wave1 task but in this case add an input parameter
node. Go to the second tab In Params of the Wave1 Node Editor, click on
Add, select frequency and click ok).

Note: Choosingfrequency as an input node parameter in the Wave1 task
means that whatever we plug into this node will be controlling Wave1’s
frequency. There is no type checking mechanism on parameters.

24

6. Now, make a connection between the output node of Wave and the input
node of Wave1 by dragging a cable between the nodes. Add a SGTGrapher
task (in SignalProc/Output toolbox) and connect it to the output from Wave1.
You should now have the workflow we first looked at in figure 2.16.

7. Now, show both parameter windows for Wave and Wave1 (by double-
clicking the task’s icons) and then press the run the workflow. Move the
scroller for the frequency in Wave task thereby changing its frequency and
when you click on apply, you will notice the scroller for Wave1’s frequency
also changes. Wave is remotely controlling Wave1’s frequency! Now when
you run the workflow again you will notice that the frequency on the
graph display will also change accordingly.

2.6 Configuring Triana Options

Triana is highly configurable and remembers settings from session to session.
Window placement, window size and “zoom” level, see page 11, are saved when
Triana quits and are recalled when Triana is restarted.

In addition to these automatic configurations some settings can be manually set.
Under the Options main menu item there are two items. The first Debug Window
displays the message logging window for Triana. For most users this can be
ignored unless you are curious, it displays logging and error messages and is
used mainly by tool programmers for debugging. See chapter 4. The second
item Triana Options displays the options configuration window.

2.6.1 Options Configuration Window

Figure 2.18: Options Window - general settings

25

The Triana Options window consists of three tabbed panes.

General Options

The general options settings which can be seen on the first tab of the Triana
Options window, figure 2.18, has a set of “On/Off” check box settings.

Option Description

Auto Connect
Automatically connects a new task dropped on
a main window to a task already on the window.
There is a smart algorithm behind this that at-
tempts to connect to the correct task according
to placement on the window.

Restore Previous At Startup
Automatically save and restore the working
windows. Any main Triana windows with
workflows will be saved at shutdown and re-
stored the next time Triana is started.

Show Tool Tips
Display a short tool tip when the mouse is over
a tool or task either in the toolbox window or on
a main window.

Show Extended Tool Tips
Show a more detailed tool tip, includes package
information, directory and more.

Show Node Increase/Decrease
Icons

Show or hide the Node Editor short cuts.

Convert Output of All Units
to Doubles

Triana’s built in data types use float by default,
this option forces them to use double instead. See
chapter 4

Table 2.9: General Options

External Tools

The external tools options which can be seen in the second tab of the Triana
Options window, figure 2.19, has a series of text fields with browse buttons and
some additional controls. For most users the defaults set here should be suitable
and there is no need to change them. If you are using Triana to develop tasks
then some of these settings may be of interest.

26

Figure 2.19: Options Window - external tools

HTML/Help View The tool used to display HTML and help files within Triana.
The default is the internal HTML renderer, this can be changed by typing the path
to a browser in the text field or pressing the browse button (...) and navigating
to the executable.

HTML Editor The tool used to edit HTML and help files. The default is the
built in text editor, this can be changed by typing or browsing to the path of
another text editor.

Code Editor The tool used to edit unit source code. The default is the built
in text editor, this can be changed by typing or browsing to the path of another
text editor.

Javac Compiler The Java compiler used to compile unit source code within
Triana. The default should be the system Javac compiler, this can be changed to
a different compiler by the standard method.

Validate External Tool Locations A check box that when selected will check
that any path in the external tool fields is a valid location. The path must point
to a real program. This should be left checked unless there is a specific reason
why not, i.e. you have deliberately added a non-existent compiler. If an invalid
path is detected it must be corrected before the settings can be saved unless the
box is unchecked.

27

Classpath A button which brings up the Select Path window, see figure 2.20.
This window allows the user to configure the classpath used with the compiler
inside Triana to compile a unit. It is only used by users wanting to compile their
own units, see chapter 4. It provides the ability to add or remove and change
the order of specific items on the classpath. There are options to automatically
add all tool box paths, which will add every item on every classpath for every
tool box to the list, and an item to retain the classpath for future. This saves the
classpath when Triana has finished.

Figure 2.20: Selecting the Unit Classpath

Note: See the section on writing your own tools for more information on units
and classpaths, specifically this classpath is for compilation only. For the run
time classpath it is necessary to add any required libraries to the Triana class-
path.

Restore Defaults A button that will restore all the Triana options to their
factory settings.

Selecting OK will save all settings and close the window, returning to the normal
Triana user interface.

2.7 Getting Help

Triana units are self documenting. You can access help on a particular Triana
task by selecting the task in either the tool box window or a main Triana window
and selecting Help by: pressing the F1 function key; selecting from the contextual
pop-up menu; selecting the tool bar button; or selecting Help from the Help main
menu.

28

Chapter 3

Distributed Computing with
Triana

In the previous chapters, the majority of discussion has concerned creating work-
flows using local Triana units, units where the processing is done on the same
machine as the Triana application. However, unless the local machine happens
to be a massive super-computer, such an approach is very limiting in terms of
the computing power available to workflows. In an era of service orientated
computing, such an approach also prevents workflows from employing any of
the distributed services that are increasingly becoming available.

In this chapter we look at the facilities for utilizing distributed resources within
Triana workflows. We give an overview of TrianaŠs architecture relating to
distributed computing in Section 3.1, in particular noting the differences between
the grid-oriented components and service-oriented components. In sections that
follow sections we outline the current distributed computing bindings within
Triana, namely Web Services (Section 3.2), P2PS (Section 3.3) and the GridLab
GAT (Section 3.4).

3.1 Overview

Distributed components within Triana can be split into two categories, which we
refer to as grid-oriented components and service-oriented components:

Service-Oriented - Service oriented components, such as web services and
P2PS services, are network accessible components that exist on remote

29

GAP Interface GridLab GAT

P2PS
GRAM

Adaptor

GRMS

Adaptor

Local

Adaptor

UDDI

Web

Service

GRMS

iGrid

GRAM

Triana

WSPeer

WServe

Mercury

Network

P2PS

Service

Service-Oriented Grid-Oriented

GAP Interface GridLab GAT

P2PS
GRAM

Adaptor

GRMS

Adaptor

Local

Adaptor

UDDI

Web

Service

GRMS

iGrid

GRAM

Triana

WSPeer

WServe

Mercury

Network

P2PS

Service

Service-Oriented Grid-Oriented

Figure 3.1: Distributed Component Middleware within Triana.

computing resources. These components can be discovered by Triana and
then invoked from within a Triana workflow

Grid-Oriented - Grid oriented components represent jobs launched by Triana
on a remote machine using a grid resource manager, e.g. GRAM1 or
GRMS2. Unlike service components, these jobs do not have network ac-
cessible interfaces so communication is only available via input/output
files.

Triana uses different interfaces to access these two categories of distributed com-
ponent. For service-oriented components the misnamed GAP Interface (Grid
Application Prototype Interface) is used, while for grid-oriented components
the GridLab GAT (Grid Application Toolkit) API is used. Both these interfaces
have multiple bindings which allow different service/grid middleware to be em-
ployed without amending the Triana application code (as shown in Figure ref-
fig:distarch). For service-oriented components, web services and P2PS services
can currently be invoked, while for grid-oriented components, job submission
can currently be done using GRMS, GRAM or the local adaptor. Both the GAP
Interface and the Gridlab GAT allow new bindings to be plugged in when they
become available. For example, when a Condor GAT adaptor becomes available
Triana will automatically be able to utilize Condor job submission.

We outline the process for invoking web services in Section 3.2 and for P2PS
services in Section 3.3, however, given that both invocations are done via the
GAP Interface, there is a lot of commonality between the processes. We outline
job submission via the GridLab GAT in Section 3.4; this covers using GRMS,

1see www.globus.org
2see www.gridlab.org

30

GRAM and Local adaptors.

3.2 Web Services

An important current paradigm in distributed computing is web services. Web
services are remote software components accessible using standard network
protocols and with defined XML-based interfaces. Already a large number of
web service components are available via the Internet, and increasingly legacy
applications are being wrapped in web service interfaces.

In Triana terms, web services function exactly as locally available tools. A web
service receives input data, performs some operation on that data, and returns
results. Due to this similarity, Triana allows the user use web services within a
workflow as if they are standard tools. Once a web service has been discovered
or imported (see Sections 3.2.2 and 3.2.3), it appears as a tool in the tool tree
alongside the other tools and can be connected into a Triana workflow in exactly
the same manner of other tools.

As well as discovery and importing web services, Triana allows the user to
deploy a workflow subsection as a web service for other users (including other
Triana users) to access. We discuss this more in Section 3.2.7.

3.2.1 Web Service Configuration

Web service configuration can be done using the Services→Configure menu op-
tion, and the selecting Configure next to the web service option. It should be
noted that Triana automatically loads the last used web service configuration
and therefore this configuration step needs only be done if you are changing
the web service options, e.g. using a different UDDI repository. It should also
be noted that once web services features (e.g. discovery) have been utilized the
configuration cannot be changed within the current running Triana. This will
be indicated by a disabled Configure option.

The web service configuration dialog (see Figure 3.2) is split into two panels,
Basic and Advanced. The Basic panel enables the web service HTTP port and the
UDDI repository to be set. The HTTP port is the port used by services created
within Triana (see Section 3.2.7) only. If using this feature then this port must be
open on the local firewall otherwise users will not be able to access the services.
For simply invoking external web services not port need to be opened.

31

Figure 3.2: Web Service Configuration Dialog.

The UDDI repository is used by Triana to discover services (see Section 3.2.2. By
default the XMethods (www.xmethods.net) is set, but additional repositories can
be added. Note that when adding a UDDI repository only the inquiry address
is required, the publish address is only required if deploying services within
Triana, and a username/password are only needed if required by the UDDI
instance.

To publish in some UDDI repositories trust stores are required. If this is the case
then the location of the trust store file should be specified in the config.xml
which is located in the /.wspeer/admin directory. Dummy trust store files
can be found in the triana/system directory, these work for some UDDI in-
stances.

The advanced panel allows additional properties to be configured, such as proxy
addresses and security. Information on these properties may be found on the
WSPeer website (www.wspeer.org).

3.2.2 Discovering Web Services

Once that a UDDI repository has been configured, web services can be discov-
ered very simply using the Services→Discover Services menu option. This option
displays a dialog prompting for the name of the service to search for. This can
either be the exact name or can include % as a wildcard character. For example,

32

Figure 3.3: Web Service tools in the Tool Tree.

‘C%’ will search for all web services beginning with the letter C.

When a web service is discovered, tools representing each of the operations
on that web service are inserted into the Web Services package in the tool tree,
alongside the existing locally available tools, as shown in Figure 3.3.

3.2.3 Importing Web Services

If a web service is not listed in a UDDI repository, then it can be imported
directly into Triana from its WSDL description. This is done through selecting
the Services→Import Service menu option, which causes a dialog requesting the
service location to be displayed. This service location is the full http address
of the WSDL document specifying the web service to be imported3. The web
service at the service location will be imported into the the Web Services package
in the tool tree.

3.2.4 Conncecting Web Services

Once a web service has been discovered/imported and appears in the user’s tool
tree, it can be instantiated by dragging the tool onto the main workspace (in the
same way locally available tools are instantiated). Web services tasks appear in
red on the workspace.

3For example, an web service interface to Altavista’s BabelFish language is located at
http://www.xmethods.net/sd/2001/BabelFishService.wsdl

33

Each input node on an instantiated web service task represents an element of the
input message for that operation, and each output node represents an output
message element. Information on the required input/output types for a web
service is displayed when the mouse is hovered over the task.

Figure 3.4: Using StringGen and StringViewer to provide input to and display
the output from a temperature conversion web service.

Locally available tools can be used to provide the input to and display the
output from web services. Two useful local tools are Common.String.StringGen
and Common.String.StringViewer, which are used to generate string input and
display string output respectively. These tools can also be used to input/output
standard numerical data types (int, double etc.) as Triana automatically converts
to/from the required type. In Figure 3.4 we show StringGen and StringViewer
being used as input and output for a temperature conversion service. Other
local tools can also be used as long as their output/input type is compatible with
the type required by the web service, or alternatively the output from one web
service can be directly piped to another. We look at handling complex data types
in Section 3.2.6.

A workflow containing web services is executed as for a standard Triana work-
flow (i.e. by pressing the run button).

3.2.5 Bible Translation Example

In this section we demonstrate the creation of a simple bible translation work-
flow using third-party web services. This example uses the XMethods UDDI
repository, so the following UDDI inquiry and publish addresses should be
specified in the configuration (see Section 3.2.1):

34

Inquiry - http://uddi.xmethods.net/inquire
Publish - https://uddi.xmethods.net/publish

The two web services we wish to use are BabelFish4, an interface to AltaVista’s
Babelfish service, and BibleVerses, a web service for extracting verses from the
bible. The easiest way to import these web services is using the Services→Disover
Services menu option, and then specifying ‘B%’ in the Discover Service dialog
(this queries the UDDI for all tools beginning with B).

Figure 3.5: A simple bible translation workflow.

Once the BabelFish and BibleVerses web services have been discovered, they
will appear as tools in the Web Services toolbox on the tool tree. Each of these
services should be dragged onto the workspace, along with local StringGen
and StringViewer tools, to create the workflow shown in Figure 3.5. StringGen
and StringViewer are in the Common.Input and Common.Output packages
respectively.

In this workflow StringGen provides the input for BibleVerses. If we double-
click on StringGen and enter ‘Genesis 1:1-7’ in the input dialog, then this input
will cause BibleVerses to extract the first seven verses from the bible (Genesis
chapter 1, verses 1 to 7). The output from BibleVerses is used to provide the
second input for BabelFish, which is the text that is translated. The first input
to BabelFish is provided by StringGen1. This is the languages that the text
should be translated from/to. Using StringGen1 to specify ‘en_fr’ indicates we
wish to translate from English to French. The output from BabelFish is sent to
StringViewer.

4Online documentation for BabelFish and BibleVerses can be found at www.xmethods.net.

35

Pressing the play icon on the tool bar will run the bible translation workflow we
have created, and hopefully the ‘Genesis 1:1-7’ extract from the bible, translated
into French, will be displayed in StringViewer (double-click on StringView view
the result).

3.2.6 Complex Data Types

In Triana there are two ways to handle web services that require complex data
types: use the dynamic web service type generator and viewer, or generate static
type classes and create custom tools.

Figure 3.6: Generating/viewing complex data types using WSTypeGen and
WSTypeViewer.

The input to a web service that requires a complex type can be automatically gen-
erated using the WSTypeGen tool, which resides in the Common.WebServices
toolbox. Similarly, the complex output from a web service can be viewed us-
ing the WSTypeViewer tool, which is also found in the Common.WebServices
toolbox. To use these two tools simply connect them to the web service task
(as shown in Figure 3.6). The act of connecting them to the web service will
cause a form for inputting/viewing the complex type to be dynamically gen-
erated. This form can be accessed by either double-clicking on the WSType-
Gen/WSTypeViewer task, or by right-clicking and selecting Properties from the
pop-up list.

Although WSTypeGen and WSTypeViewer are useful for testing web services
that use complex types, for more long-term solutions it is generally required

36

that static classes are generated for the complex types. Static type classes can
easily be generated using a utility such as Apache’s WSDL2Java5. Utilities such
as WSDL2Java parse the WSDL description of the web service and generate a
set of Java classes for the web service and the types used within that service. It
is easiest if these classes are created in the same location as the tools that will
access them (same Java base directory).

Once static classes have been created for the complex types, custom Triana tools
for populating the types with data or converting between types must be created.
These tools should be able to access the complex type classes in the same way as
for any Java class. We describe creating custom Triana tools in section 4.2.

3.2.7 Deploying Web Services

As well as using external web services, Triana provides the mechanism for
deploying user workflows as fully functions web services. These deployed web
services can either be used within a local Triana workflow, allowing some of
the processing to be handled by a remote resource, or by third-party users. It
should be noted that third-party users do not have to use Triana to access these
web services.

In order to deploy web services Triana must first be configured with a UDDI
to which you have both publish and inquiry access (see Section 3.2.1). This
includes configuring the trust key store if required. Secondly, Triana launcher
services must be run on the machine(s) that will host the deployed services. To
do this Triana should be installed on those machines and the following command
executed from the command-line:

TrianaService -ws

A web service can be created from either a single task or a group of tasks (see
Section ??). To deploy the task/group task as a web service right-click on the
task and select Create Service. This will cause a dialog to appear with a list of
the locations where the web service can be hosted (as shown in Figure 3.7). This
list will include the available launcher services (see above) along with a ’Local
Service‘ option. Creating a local service means that the web service is hosted
within the local Triana as opposed to on a remote site. Note that it can take
a while for Triana to discover the available launcher services from UDDI; they
automatically appear in the list once discovered.

5See http://ws.apache.org/axis/java/user-guide.html

37

Figure 3.7: Dialog for deploying a task/group task as a web service.

Once a host has been chosen, Triana will attempt to deploy a web service on
that host. While this process is taking place, the task in the workflow will
appear with red stripes. The task becoming completely red indicates that the
deployment has been successful and that the web service is ready to be used.
As mentioned before, web services deployed using Triana can be used either
within Triana or by third-party users.

Figure 3.8: Using xsd tools to ensure standard input/output XML types are used
when deploying a web service.

The input and output data types for deployed web services are automatically
determined by Triana. If the input/output types from the task being distributed
coincide with a standard XML type (e.g. java.lang.String, java.lang.Integer etc.)
then that standard XML type is assigned. For non-standard types Triana assigns
a string as the input/output type and assumes that the data received by the web

38

service will have been serialized to a string using JSX. Such web services can be
seamlessly handled by Triana but will be difficult for third-party users to use.
It is recommended that standard types are used whenever possible, and that
the tools xsd_string, xsd_double etc. are appended to the start of the workflow
subsection being distributed to ensure the correct standard type is used, as
illustrated in Figure 3.8. These tools can be found in the Common.WebServices
toolbox.

3.3 P2PS

P2PS (Peer-to-Peer Simplified) is a lightweight peer-to-peer infrastructure for
dynamic service discovery and pipe-based communication. As, alongside web
services, P2PS is one of the bindings to the GAP Interface (see Section 3.1) it can
be used within Triana to discovery and communicate with remote services. It can
also be used to dynamically deploy Triana workflow subsections as standalone
services running on remote machines.

Unlike Web Services, where much of the benefit comes from utilizing existing
remote services, the lightweight and dynamic nature of P2PS means the ability
to deploy workflow subsections as remote services is particularly beneficial. For
example, this mechanism can be used to distribute processing units to nodes in
a cluster in a high-throughput task-farming application. We discuss deploying
P2PS services further in Section 3.3.2. We also outline discovering existing P2PS
services and connecting them into Triana workflows in Sections 3.3.3 and 3.3.4.
However, first we describe configuring P2PS peers (Section 3.3.1).

3.3.1 P2PS Configuration

To configure P2PS select the Services→Configure menu option, and then the
Configure option next to P2PS. Note that once P2PS has been used within the
current running Triana it cannot be reconfigured and this option will be disabled.
For discovering and communicating with services within your local subnet the
default configuration should be sufficient.

For bridging between multiple subnets a rendezvous connection is required.
The simplest way to do this is to enable Triana as a rendezvous peer and then
have at least one service in the other subnet(s) enabled as a rendezvous peer
pointing to Triana’s local rendezvous port (see the Discovery Panel in the P2PS
Configuration Dialog).

39

There are multiple different options that can be configured within P2PS, such
as the transport protocols used and rendezvous policies, however discussion of
these are beyond the scope of this manual. More information can be found at
www.p2psimplified.org.

3.3.2 Deploying P2PS Services

As with web services (see Section 3.2.7), individual/group tasks within a Triana
workflow can be deployed as P2PS services running on a remote machine. The
mechanism to do this is exactly the same a for web services. Before deployment,
first Triana launcher services must be started and configured on each remote
machine that will host a P2PS service. This is done by installing Triana and the
running the command:

TrianaService Űp2ps

To deploy an individual/group task, right-click on the task and select Create
Service. This will cause a dialog to appear listing the locations where the remote
service can be hosted. This list will include the locations where Triana launcher
services are available plus a ’Local Service‘ option. The ’Local Service‘ option
indicates that the remote service will be hosted within the current running
Triana. Note that it can take a while for Triana to discover the available launcher
services; they automatically appear in the list once discovered.

Figure 3.9: Dialog for deploying a task/group task as a P2PS service.

Once a host has been chosen, Triana will attempt to deploy a P2PS service on
that host (as shown in Figure 3.9). While this process is taking place, the task
in the workflow will appear with purple stripes. The task becoming completely

40

purple indicates that the deployment has been successful and that the P2PS
service is ready to be used. P2PS services deployed using Triana can be used
either within Triana or by third-party users.

Unlike Web Services, there is not a standard set of data types defined for P2PS. All
data sent to and received from P2PS services deployed using Triana is serialized
using JSX. This serialization should be seamless to Triana users and is only a
consideration for third-party software using Triana deployed services.

3.3.3 Discovering P2PS Services

Existing P2PS services can be discovered very simply using the Services→Discover
Services menu option. This option displays a dialog prompting for the name of
the service to search for. With P2PS this search name has match exactly (ignoring
case) the service name required.

When a P2PS service is discovered, a tool representing the operation provided
by that service will appear in the tool tree alongside existing locally available
tools. The P2PS service tool will appear in the same package as the original task
used to create the service, however it will be displayed with a remote service
icon (shown in Figure 2.3).

3.3.4 Connecting P2PS Services

Once a P2PS service has been discovered/imported and appears in the user’s
tool tree, it can be instantiated by dragging the tool onto the main workspace
(in the same way locally available tools are instantiated). P2PS services tasks
appear as purple on the workspace. P2PS service tasks can be connected to local
tasks and other remote service tasks in exactly the same way as standard Triana
tasks.

A workflow containing P2PS services is executed as for a standard Triana work-
flow (i.e. by pressing the run button).

41

3.4 GridLab GAT

The GridLab GAT6 is a generic and flexible API for accessing Grid services, such
as job submission and file movement. It has an adaptor based pluggable archi-
tecture (see Figure 3.1 that allows different service bindings to be utilized. For
example, a GRAM adaptor allows job submission using Globus GRAM, while a
GRMS adaptor allows job submission using GridLab GRMS. New adaptors can
be developed and plugged in without changing application using the GAT (i.e.
Triana).

Triana uses the GridLab GAT to allow job submission with a workflow, and
also to transfer input files to and output files from a remote job. We give
an example GAT workflow involving staging files and running a remote job
in Section 3.4.1, and then descriptions of job submission and file transfer in
Sections 3.4.3 and 3.4.4 respectively. We outline configuring the GridLab GAT
in Section 3.4.2.

Figure 3.10: Example GAT workflow.

3.4.1 Example GAT Worfklow

In Figure reffig:gatexample, we show an simple example workflow for running a
Grid job and transferring files to/from that job. This example workflow involves
the following steps:

• Input generated by StringGen is written to the file InFile.

6see www.gridlab.org

42

• InFile is pre-staged at the location where MyJob is to be run.

• MyJob is run

• OutFile is post-staged from the location where MyJob was run

• OutFile is read and the output is viewed in StringViewer

The job (MyJob) run in this example could be any command-line application,
and the input/output data (InFile/OutFile) can be any type of data. For example,
MyJob could be a heavyweight numerical solver, InFile the parameter file spec-
ifying the parameters of the solver and OutFile the results from the solver.

Courtesy of using the GridLab GAT, this example workflow is the same regard-
less of whether MyJob is executed on the local machine or a remote grid resource
(such as a super-computer). We discuss submitting jobs to grid resources further
in Section 3.4.3.

3.4.2 GAT Configuration

The architecture of the GridLab Gat allows different adaptors to be plugged in
for job submission/file transfer, and depending on the binding you intend to
utilize different configuration is required. Currently the available adaptors for
job submission are GRAM, GRMS and local, the configuration they require is as
follows:

GRAM - Grid proxy initialized with valid Grid credential (e.g. usinggrid-proxy-init
in Globus COG Kit7). Contact your local Grid administrator concerning
acquiring a Grid certificate.

GRMS - Grid proxy initialized with valid Grid credential (same as GRAM).

Local - No configuration required.

The currently available adaptors for file transfer are GridFTP, FTP, HTTP and
local, the configuration they require is as follows:

GridFTP - Grid proxy initialized with valid Grid credential (same as GRAM
job submission).

FTP - Need to specify username and password in GAT configuration.

HTTP - No configuration required.

7See www.globus.org

43

Local - No configuration required.

3.4.3 Job Submission

Job submission in a Triana workflow is represented by a special Job component,
a default version of which can be found in the Common toolbox. Dragging the
default Job component into a workflow creates an empty job submission task
(which by default is medium blue). Right-clicking on this task and the selecting
Job Properties allows the submission details to be set.

Figure 3.11: Job Properties Dialog.

The main panel of the Job Properties dialog (shown in Figure 3.11) allows the
following submission properties to be set:

Host Name - Host name of the machine the job will execute on. Leave blank if
running on the local machine or delegating to a Grid resource broker.

Executable - The job executable URI (e.g. /bin/date).

Arguments - The arguments for the job (if required).

To launch a basic job simply set the host name, executable and arguments in the
Job Properties dialog, and then run the Triana workflow as normal. The job will
be submitted to the appropriate resource manager (GRAM, GRMS, Local etc.)
and executed on the specified host.

As well as detailing the job to be executed, the Job Properties dialog also allows
the pre-staged (input) and post-staged (output) files for the job to be specified.

44

Figure 3.12: Inputs Panel in the Job Properties Dialog.

This is done using the Inputs Panel and the Outputs Panel in the Job Properties
dialog.

The Inputs Panel in the Job Properties Dialog (see Figure 3.12) lists the files that
are pre-staged in the job execution directory before the job is run. This list also
represents the mapping between the input nodes on the job submission task
and the pre-staged files, e.g. if the first item on the list is param.txt then the
file at node 1 is pre-staged in the running directory as param.txt. Instead of the
actual pre-staged file name, the tag <STDIN> indicates the file is piped to the
standard input for the job. The tag <PRE_STAGED> indicates that the input file
is pre-staged under its original name.

The Outputs Panel in the Job Properties Dialog is exactly the same as the Inputs
Panel except that it specifies the files that are post staged-after job execution,
and their mapping to the job task output nodes. As with the Inputs Panel, the
actual name of the file in the job execution directory can be specified, or the tags
<STDIN> and<STDERR> can be used to specify the post-staging of the standard
input and standard error respectively. The tag <POST_STAGED> indicates the
name of the file connected to the relevant output node is post-staged under its
original name.

The number of input/output nodes on a job submission task is automatically
set equal to the number of pre-staged and post-staged files. Connecting file
components to these input and output nodes specifies the source location of
the pre/post-staged files. This can be seen in the simple example shown in
Figure 3.10. In this example, InFile is connected to the input node of MyJob,
indicating that InFile is pre-staged before job execution, and OutFile is connected
to the output node of MyJob, indicating that OutFile is post-staged after job

45

execution. We discuss file transfer using the GridLab GAT further in the next
section.

3.4.4 File Transfer

As with job submission, files in a Triana workflow are represented by a special
File component. A default version of the file component can be found in the
Common toolbox (by default instances of this component are green). The file
transfer operation associated with a file task instance depends on where it is
connected into the workflow. For example:

Figure 3.13: File Transfer Operations.

• Connection between two file tasks indicates a file transfer from the left file
to the right file.

• Connection from a file task to a local task indicates a file read operation,
with the input data being processed by the local task.

• Connection from a local task to a file task indicates a file write operation
using the output data from the local task.

• Connection from a file task to a job submission task indicates pre-staging
the file before job execution. The mapping between the file task and the
file in the job execution directory is specified in Inputs Panel of the Job
Properties dialog (see Section 3.4.3).

• Connection from a job submission task to a file task indicates post-staging
the file after job execution. The mapping between the file in the job exe-
cution directory and the file task is specified in Outputs Panel of the Job
Properties dialog (see Section 3.4.3).

Illustrations for each of these file transfer operations are shown in figure 3.13.

46

File tasks can be instantiated by dragging a file component (either the default
file component in the Common toolbox or a custom file saved into the toolboxes)
onto the workspace. Once instantiated, the file represented by the file task can
be set through right-clicking on the task and selecting Set File. The URI of any
file that can be handled by available GAT Adaptors (see Section 3.4.2) can be set.
For example:

temp/myfile.dat - Local file in temp directory (relative to running directory).

/temp/myfile.dat - Local file in temp directory (relative to root directory).

file:///temp/myfile.dat - Same as temp/myfile.dat.

file:////temp/myfile.dat - Same as /temp/myfile.dat.

file://bouscat.cs.cf.ac.uk/temp/myfile.dat - File on remote machine in temp di-
rectory (relative to user home on remote machine).

file://bouscat.cs.cf.ac.uk/temp/myfile.dat - File on remote machine in temp di-
rectory (relative to root directory on remote machine).

file://bouscat.cs.cf.ac.uk//temp/myfile.dat - File on remote machine in temp di-
rectory (relative to root directory on remote machine).

ftp://bouscat.cs.cf.ac.uk/temp/myfile.dat - FTP accessible file on remote ma-
chine.

http://bouscat.cs.cf.ac.uk/temp/myfile.dat - HTTP accessible file on remote ma-
chine.

gsiftp://bouscat.cs.cf.ac.uk/temp/myfile.dat - GSI FTP accessible file on remote
machine.

As can be seen from some of the examples above, it is valid to either express the
protocol used to access the file explicitly (e.g. HTTP, FTP) or to leave it to the GAT
to determine which protocol to use (e.g. when file scheme is specified).

47

Chapter 4

Extending Triana

Triana has been developed with extensibility in mind. From relatively simple
extensions, such as writing your first unit, to major extensions, such as building
alternative workflow language readers and writers or new GAP bindings, Triana
has been designed to be extended.

This chapter deals with some of the possible extensions to Triana. The content
here is often more technical, from a programming perspective, than the rest
of this manual. A understanding of some technical matter such as the Java
programming language is a prerequisite. This chapter is not intended to be a
Java programming guide, there are many fine resources for that.

4.1 CVS Access

If you intend to do anything more than simple unit programming in Triana it
is recommended that you use a developers version of the system from our CVS
repository.

This section describes the steps in correctly checking out the source code for
the core Triana and Triana toolboxes from the cvs repository and building from
the source code. If you don’t know how to use a CVS client or don’t have a
CVS account, then it is recommended that you follow the instructions in section
2.1.

48

4.1.1 Conventions

Note: These instructions assume you have the necessary user accounts and
passwords. It is aimed at command line cvs users. WinCVS or similar users
should be able to follow the instructions by using the repository and module
names within their particular CVS Client.

• Text written this font should be typed as command line input. Com-
mands should be entered without line breaks unless explicitly instructed.
(This includes line breaks due to book formatting)

• Text written in this font and surrounded by < ... > should be replaced by
the users appropriate details.

• Text in this font signifies the unix command line prompt, the text following
it will be the command to type.

4.1.2 CVSRoot and Passwords

The “CVSROOT” you should you will depend on whether you have read only
“pserver” access or write “ext” access. This document assumes “pserver”,
if you don’t know then ask the person who gave you your user name and
password.

For the Core Triana and default Toolbxes repositories there is anonymous
“pserver” access, use the username <anonymous> with no password, just hit
return at the password prompt.

4.1.3 Tagged, Stable and Unstable Versions

Please see the web site http://www.trianacode.org for the current branch tag
names in the repositories. If you don’t know what a tag is please see a good text
book such as the CVS Book.

4.1.4 A Word About Directory Structure

For administration reasons Triana is split into a number of different packages
which are stored in various CVS repositories. Some of these are project specific

49

and not public so don’t assume that because something is listed in this document
that you will be able to get the source code from the CVS server.

The public packages are:

1. Core Triana. The Triana Environment itself.

2. Toolboxes. The default toolboxes that come with Triana.

3. Toolboxes-dev. The unstable toolboxes that developers are currently work-
ing with. Use at you own risk.

The project specific packages are:

1. GEO. The Gravitational Waves tools.

2. Gravity. Example tools from the book “Gravity From The Ground Up” by
Bernard Schutz.

3. GriPhyN. Tools from collaboration work with the GriPhyN project.

There are two standard ways to structure a Triana distribution from CVS, de-
pendant on: whether you expect to be making regular changes to the source
code under your control and/or you want to do frequent updates for the latest
version from CVS; Or you just want to check out the latest version and build it
once. CVS allows checking modules out inside other modules which will give
the same structure as the packaged version of Triana but it will complain if an
update or commit is attempted in the source tree where there is a foreign module
lower down the tree.

4.1.5 Easy Install

These instructions will checkout and install Triana to the same structure as the
packaged release version. It is fine for most users however if you expect to use
CVS for more than updating small numbers of files it is suggested you use the
other set of instructions.

This install will put all of the various toolboxes inside the Triana source tree and
they will need to be removed to perform a cvs update on the core Triana code
and then checked back out again.

From the command line:

50

prompt$ cvs -d :pserver:<username>@trianacode.org:/home/cvsroot/
triana login
(Logging in to username@trianacode.org)
CVS password: <userpassword>

prompt$ cvs -d :pserver:<username>@trianacode.org:/home/cvsroot/
triana checkout -P triana

prompt$ cd triana

prompt$ cvs -d :pserver:<username>@trianacode.org:/home/cvsroot/
trianatools login
(Logging in to username@trianacode.org)
CVS password:] <userpassword>

prompt$ cvs -d :pserver:<username>@trianacode.org:/home/cvsroot/
trianatools checkout -P toolboxes

Note: The rest of the Triana modules from CVS are optional and depend on
project permissions to access.

prompt$ cd toolboxes

prompt$ cvs -d :pserver:<username>@trianacode.org:/home/cvsroot/
trianatools checkout -P toolboxes-dev

prompt$ cvs -d :pserver:<username>@trianacode.org:/home/cvsroot/
geotools login
(Logging in to username@trianacode.org)
CVS password:] <userpassword>

prompt$ cvs -d :pserver:<username>@trianacode.org:/home/cvsroot/
geotools checkout -P GEO

prompt$ cvs -d :pserver:<username>@trianacode.org:/home/cvsroot/
gravity login
(Logging in to username@trianacode.org)
CVS password:] <userpassword>

prompt$ cvs -d :pserver:<username>@trianacode.org:/home/cvsroot/
gravity checkout -P GravityFromTheGroundUp

prompt$ cvs -d :pserver:<username>@trianacode.org:/home/cvsroot/
griphyntools login

51

(Logging in to username@trianacode.org)
CVS password:] <userpassword>

prompt$ cvs -d :pserver:<username>@trianacode.org:/home/cvsroot/
griphyntools checkout -P GriPhyN

After those CVS commands you should have a directory structure like this:

triana/
/bin/
/toolboxes/

/Audio
/... other standard toolboxes
/toolboxes-dev
/GEO
/GravityFromTheGroundUp/
/GriPhyN

The toolbox structure is the import thing, there will be extra directories under
triana/ not mentioned here.

Build and Run

To build set an environment variable for your system, $TRIANA for Unix like
systems or %TRIANA% for Windows, to point the top level triana directory. Run
the build script, buildTriana for Unix or buildTriana.bat for Windows:

prompt$ $TRIANA/bin/buildTriana

Run the start script, triana or triana.bat:

prompt$ $TRIANA/bin/triana

4.1.6 Developer Install

If you are intending to write or modify any code within the various CVS modules
or you just want to regularly update the modules from CVS. Then we suggest
that you keep all the CVS modules in their own separate directory stuctures.
The Ant1 build file is written to be able to build from default either the previous
structure or a directory structure where all the cvs modules are at the same level

1http://ant.apache.org/

52

in the file system.

For instance my directory structure looks like this:

project/triana/
project/toolboxes/
project/toolboxes-dev/
project/toolboxes_other
project/toolboxes_other/GEO
project/toolboxes_other/GravityFromTheGroundUp
project/toolboxes_other/GriPhyN

So from a sensible starting directory run the CVS commands from section 4.1.5
with the cd commands so that the Triana core and default toolboxes modules
from cvs reside in your current directory.

Note: The GEO, Gravity and Griphyn toolboxes should really reside in a sepa-
rate subdirectory. Here I’ve created a directory called “toolboxes_other”, this is
because Triana assumes that a toolbox contains packages, so GEO for instance
is the top level package for the GEO tools. When Triana attempts to locate tools
it uses the following path :-

[toolbox][tool package]*[toolname]

e.g. [/project/toolboxes/][SignalProc/][Input/][Wave]
or [/project/toolboxes_other/][GEO/][Algorithms/][SaturationMon]

The build and run instructions are almost the same as for the easy install.

• Set the TRIANA environment variable to point to the triana directory.

• Either edit the build file (build.xml in the main Triana home directory)
and set the appropriate toolbox location variables in the “User Editable”
section, or the preferred method add a new file called “build.properties”
to the Triana home directory with the properties and their values. The
contents of my “build.properties” file can be seen in figure 4.1

• Run the buildTriana script.

53

javac.flag.debug=on
javac.flag.deprecation=on
triana.geo.tools=../toolboxes_other/GEO
triana.gravity.tools=../toolboxes_other/ \

GravityFromTheGroundUp
triana.griphyn.tools=../toolboxes_other/GriPhyN}

Figure 4.1: example build.properties file

Note: Unlike the standard installation, Triana will not automatically pick
up the toolboxes when it is started so you will have to add those
within Triana from the menu Tools, Edit Tool Box Paths. In my case,
I select the directories - /project/toolboxes/, /project/toolboxes-dev/,
/project/toolboxes_other/.

4.1.7 Other Install

You can actually have your toolbox modules anywhere you like in your file
system and still have the build process pick them up and compile them. In the
file build.xml there is a commented section titled “USER EDITABLE PROP-
ERTIES” within this section there are a number of commented out proper-
ties for the various toolbox modules. Uncomment any of these and set them
to the appropriate location to override the default locations. Alternatively
add a file called “build.properties” with the appropriate lines containing -
propertyname=value.

4.2 Writing Your Own Tools

Writing tools in Triana can be started very easily. The only prerequisite is a little
understanding of the Java programming language, working with files and direc-
tories in the operating system of your choice and the desire to experiment.

4.2.1 Toolbox Structure

Toolboxes in Triana are, as you might expect, just a series of directories and files
within a set structure. However the relationship between the underlying file
structure and the tree representation in the toolbox window is not necessarily

54

that simple. The logical (tree view) and the physical (file view) of the toolbox
structure does not have to be the same although it often is.

Toolbox structure starts with a toolbox root directory. The toolbox root is the
directory that Triana looks in recursively for toolboxes. Triana can, and in
fact does, have more than one toolbox root they are a useful way of com-
partmentalising different groups of tools. If you are using the default Triana
download then your default toolbox root will be $TRIANA/toolboxes (for unix)
or %TRIANA%\toolboxes\ (for windows). See the next section, 4.2.2, for more
information about adding or changing toolbox roots.

Underneath the toolbox root are packages, represented by directories containing
other directories, and toolboxes, represented by directories containing tools.
The whole process is recursive so package hierarchies can be to any depth and a
toolbox can contain sub-packages as well as tools. Triana searches the directory
structure looking for tool files and then builds up the tree from leaf node (tool)
back to toolbox root.

A tool box directory contains an XML component definition file for each tool, a
src directory that contains any source code files for the tool, a help directory
that contains any help files and an optional lib directory that typically holds
shared library objects for specific platforms.

All of the directory structure and files can be created by Triana and for most
users that is how they should be created. In section 4.2.2 we will discuss how
to create a new toolbox and in section 4.2.3 we will populate that toolbox with
a new tool.

4.2.2 Creating a New Toolbox

There are a number of ways to create a new toolbox but first so that we don’t
disturb the existing tools and toolboxes within Triana we will create a new toolbox
root. The new toolbox root will be used to hold all of our new toolboxes and
tools, that way they can be kept separate from the existing stable tools if we
need to update the Triana version at a later date.

To change or add toolbox roots to Triana select the Tools main menu item and
then the Edit Tool Box Paths item. You should see the window in figure 4.2.

The paths will obviously look slightly different to this depending on you set up
and operating system, the one shown is a unix system. In the default setting
shown here there are already four toolbox roots set and each of these has a

55

Figure 4.2: Edit Toolbox Paths

different purpose. The list of toolbox roots is presented in the top panel on the
dialog with Add and Remove buttons which add or remove toolbox roots from
that list.

Note: There is no way to edit an existing toolbox root, it should be removed and
a new one added.

The four fields below the list, labelled Default, Data, Remote and User and the
four default toolboxes.

Default is the standard toolbox root where Triana stores all of the normal in-
cluded tools.

Data is a specific toolbox root for data tools such as files.

Remote is the toolbox root where Triana stores the component definition files
for any remote tools such as P2PS services or web services.

User is the toolbox root that Triana uses to store user specific tools such as new
group tools by default.

Note: Apart from the default toolbox root which will normally reside inside the
Triana home directory, all of the other three toolbox roots are stored in a special
hidden directory in the users home directory called .TrianaV3Resources. This
directory is explained in more detail in the “trouble shooting” section on page
68.

Now to add a new toolbox root all we need to do is to select the Add button and
use the file browser to navigate to a suitable empty directory or create a new
directory. Select OK and the new path has been added to the list of tool box
roots. We are now ready to create a new tool and toolbox structure within that

56

Figure 4.3: Unit Panel in the Unit Wizard.

root path. To do that we will use the Tool Wizard explained in the next section,
section 4.2.3.

4.2.3 Using the Unit Wizard

The Unit Wizard provides a simple GUI for generating skeleton Triana unit code.
Once generated only the process() method requires implementation in order
to produce a Triana unit. Note that this unit must then be compiled and the tool
XML file generated before it can be used within Triana. We discuss compiling
tools and generating tool XML is Section 4.2.4.

The Unit Wizard is located in Tools→New Unit menu. When selected this brings
up the unit wizard window, which has a number of panels that need be com-
pleted before the skeleton code can be generated. In the next sections we look
at the options on each of these panels.

Unit Panel

The first panel in the Unit Wizard (shown in Figure 4.3) has a number of fields
allowing basic information about the unit to be specified. This information is as
follows:

Unit Name - The name of the Java class that is generated and also the default
name for the tool/tasks representing this unit. When a tool/task is renamed

57

this does not change the name of the underlying Java unit.

Unit Package - The package of the Java class that is generated and also the
default package for the tool representing this unit. When a tool is moved
to a different package this does not change the package of the underlying
Java unit.

Tool Box Path - The base toolbox directory where the unit code will be gener-
ated (see Section 4.2.1).

Author - The name(s) of the unit author(s).

PopUp Description - A brief pop-up description of the units function. This
description is displayed when the mouse of hovered over the unit.

Date - The date of creation.

Help File - The html file which is displayed when the user requests help on this
unit. A skeleton help file is generated at the same time as the unit code.

Include Copyright - Whether the default Triana copyright is included in the
generated skeletion.

Input Nodes - Allows the default number of input nodes to be specified. If
resize is selected then the range of acceptable input nodes can be specified,
otherwise the number is fixed at the default.

Output Nodes - Allows the default number of output nodes to be specified. If
resize is selected then the range of acceptable output nodes can be specified,
otherwise the number is fixed at the default.

Select Next to accept the values specified in the Unit Panel. Note that these
values can be changed later, either in the wizard or in the generated code.

Data Type Panel

The second panel the Unit Wizard (shown in Figure 4.4) allows the data types
which are input/output by the unit to be specified. This information allows type-
checking between units to be done at connection time. When an input/output
type is added, two pieces of information are required:

Node - The index of the node the type is input/output on (where 0 is the first
node, 1 is the second and so on). The value All Nodes indicates that the
data type applies to any node. The value Other Nodes indicates that the
data type applies to nodes after those that have data types explicitly set.

58

Figure 4.4: Data Type Panel in the Unit Wizard.

Data Type - The data type input/output. This can be any standard java type
(e.g. java.lang.String), Triana type (e.g. triana.types.SampleSet), or any
other type that is on the Triana classpath.

In addition to the data types, the data type panel also allows the data output
policy to be set. This is the policy that is used when the general output()method
is called by the unit (as opposed to the specific outputAtNode() method. The
available output policy options are:

Copy output (pass by reference) - A reference to the data is output on each
node, no cloning is performed. Any changes later tasks make to the data
will affect all other tasks that received the reference. This policy should
only be used if the effect is desired.

Clone output on additional nodes - A reference to the data is output on the
first node, but clones of the data are output on all other nodes (if possible).
This is the default policy as changes later tasks make to the data will not
affect other tasks as they received a different version of the data.

Clone output on additional nodes - Clones of the data are output on all nodes
(if possible). This policy is required if the task outputting the data holds
on to the data for future update. With this policy these updates will not
affect other tasks as every task received a clone of the data.

Select Next to accept the values specified in the data type panel. Note that these
values can be changed later, either in the wizard or in the generated code.

59

Figure 4.5: Parameter Panel in the Unit Wizard.

Parameter Panel

The third panel the Unit Wizard (shown in Figure 4.5) allows the parameters
used by the unit to be specified. Parameters are used to represent, steer and store
the internal state of the unit. As the state of parameters is automatically shared
between the unit and its graphical interface by Triana, they are the method of
choice for communications between the unit and its graphical interface (also
referred to as its parameter panel). When adding a parameter, the following
information is required:

Parameter Name - The name of the parameter, also used as the variable name
for the parameter in the Java code. This should not include spaces or other
punctuation characters (except underscore).

Default Value - The default value assigned to the parameter.

Data Type - The data type of the parameter in the Java code. Note that all
parameters specified in the Unit Wizard are stored internally as strings
and automatically converted into the required data type within the Java
code.

Parameter Type - The type of the parameter: User Accessible indicates it can
be viewed/steered by the user, for example via the parameter panel or
parameter input/output nodes; Internal indicates the parameter is not
visible to the user; and Transient indicates the parameter is not visible to
the user and is not stored when the tool is saved.

In addition to the parameters, the parameter panel also allows the parameter
update policy to be specified. The parameter update policy states when param-
eters updated by the user are informed to the Java unit. The available options
are:

60

Figure 4.6: GUI Panel in the Unit Wizard.

Update at start of process - The updates are informed to the Java unit before the
process method is called (but no while it is executing). This is the default
policy as it prevents unexpected parameter changes during processing.

Update immediately - The updates are informed to the Java unit immediately
the parameter is changed, even if in the middle of processing. This option
is required by steerable units.

Do not update - The updates are never informed to the Java unit. Any update
mechanism has to be implemented explicitly using TaskListeners.

Select Next to accept the values specified in the parameter panel. Note that these
values can be changed later, either in the wizard or in the generated code.

GUI Panel

The fourth panel the Unit Wizard (shown in Figure 4.6) allows the graphical user
interface for a unit to be specified. The three main categories available are:

No Interface - No user interface.

GUI Builder Interface - Uses the Triana GUI Builder to define an interface for
updating the unit’s parameters. We discuss this further below.

Custom Interface - Specifies a Java class to act as the parameter panel for the
unit. This class must extend ParmaterPanel in triana.gui.panels. If
required template Java code for the panel class can also be generated
when the unit code is generated.

61

Figure 4.7: Final Panel in the Unit Wizard.

If GUI Builder interface is selected an additional panel appears allowing GUI
components to be associated with each of the unit parameters (as specified in Sec-
tion 4.2.3). A number of standard components are available, including TextField,
CheckBox, Choice, ScrollBar and File Chooser (a TextField with Browse button).
The Preview GUI button at the bottom of this panel allows the defined interface
to be previewed.

Select Next to accept the values specified in the GUI panel. Note that these
values can be changed later, either in the wizard or in the generated code.

Final Panel

The final panel the Unit Wizard (shown in Figure 4.7) shows information on
the unit and which files and directories will be created when the unit code is
generated. The Generate Tool Placeholder option indicates whether a dummy
tool in the tool tree representing the unit will be created. Once the process()
method has been implemented, right-clicking on this dummy tool and selecting
Compile will compile the actual tool.

Select Finish to generate the tool specified in the Unit Wizard. The Java source
files for the unit, html help and parameter panel (if specified) will be created in
the specified toolbox.

62

Figure 4.8: Compile Unit/Generate Tool XML Dialog.

4.2.4 Compiling Units/Generating Tool XML

Once a Java unit has been created (see Section 4.2.3) it needs to be compiled
before it can be used within Triana. Also, in order for the unit to appear in the
Triana tool tree, an XML tool representing the unit must also be generated. Both
compilation and tool XML generation can be done using the Tools→Compile
Unit/Generate Tool XML menu option. Alternatively, to recompile an existing
tool, right-click on that tool in the tool tree and select Compile.

In Figure 4.8 we show the dialog for compiling Triana tools. The available
options in this dialog include:

Unit Name - The name of the unit, as specified in the Unit Wizard.

Unit Package - The package of the unit, as specified in the Unit Wizard. Using
the browse button next the unit package field allows the Java source for a
unit to be selected; the unit name and unit package will automatically be
set.

Toolbox - The base toolbox for the unit (see Section 4.2.1)

Compile Source - Selects whether the source code for the unit is compiled. The
Javac compiler, classpath and arguments can be set.

Generate Tool XML - Selects whether a XML tool definition of the unit is gen-
erated. The name, package and file for the generated tool can be set.

Compile Graphical Interface - Selects whether the parameter panel source for
the unit is compiled. This only applies to custom parameter panels (see
Section 4.2.3.

Select OK to compile the unit. This process can take a while as the javac compiler

63

must be invoked (unless only generating tool XML). A debug window appears
showing the output from the compiler. Note that if the graphical interface is
also being compiled the two debug windows will appear.

4.3 Advanced Tool Techniques

In this section we look at some more advanced techniques that a tool developer
may wish to use. Where source code is listed only the important code or code
modified from template code is listed. For full listings look at the tool source
code listings in the UserGuide toolbox in Triana.

4.3.1 Showing and Hiding a Unit’s Parameter Panel

Problem

You want to simulate the user double clicking on a task to display the unit
parameter panel.

Solution

Call the method public void showParameterPanel() to display the unit’s
parameter panel and public void showParameterPanel() to hide the panel
again. These methods are inherited from the Unit superclass.

Discussion

Inside the process() method for your unit call the showParameterPanel()
method.

/*
* Called whenever there is data for the unit to process
*/
public void process() throws Exception {

// display the units parameter panel interface
showParameterPanel();

}

4.3.2 Pausing Unit Execution

Problem

64

You want to pause the execution of your unit programmatically until some event
happens.

Solution

Pause the thread that is running your unit and interrupt on your desired event
to resume processing.

Discussion

Say for instance that you wish to pause the execution of your unit, between the
point in the main process() method where the unit gets input from its input
node, and the point where it outputs the result. The execution should halt until
a particular parameter has been updated.

The preferred mechanism for doing this is to cause the current thread to sleep,
interrupting the thread on the parameter being updated.

Note: An important thing to remember is that the parameter update policy must
be set in the unit set up to be update immediately as opposed to the default
behaviour of updating on the execution of the process method. Without this
change to the default behaviour the execution will hang.

package UserGuide;

import triana.unit.Unit;

/**
* This unit pops up its user interface and pauses execution until something
* has been selected
*
* @author Matthew Shields
* @created 23 Feb 2005
*/
public class PopUpAndPause extends Unit {

// parameter data type definitions
private String selectedString;

// Flag set when a user selects string
boolean stringSelected;

// Flag used by a user initiated stop
boolean stopped;

/*
* Called whenever there is data for the unit to process
*/

65

public void process() throws Exception {
// set the flags to false
stringSelected = false;
stopped = false;

// display the units parameter panel interface
showParameterPanel();

while (!(stopped || stringSelected)) {
synchronized{this} {

try {
this.wait();

} catch (InterruptedException e) {
}

}
}

output(selectedString);
}

/**
* Called when the unit is created. Initialises the unit’s properties
* and parameters.
*/
public void init() {

super.init();

// Initialise node properties
setDefaultInputNodes(0);
setMinimumInputNodes(0);
setMaximumInputNodes(0);

setDefaultOutputNodes(1);
setMinimumOutputNodes(1);
setMaximumOutputNodes(Integer.MAX_VALUE);

// Initialise parameter update policy and output policy
// IMPORTANT - this must be changed for the unit to restart it’s thread
setParameterUpdatePolicy(IMMEDIATE_UPDATE);

setOutputPolicy(CLONE_MULTIPLE_OUTPUT);

// Initialise pop-up description and help file location
setPopUpDescription("This unit pops up its user interface and pauses");
setHelpFileLocation("PopUpAndPause.html");

// Define initial value and type of parameters
defineParameter("selectedString", "", USER_ACCESSIBLE);

66

// Initialise GUI builder interface
String guilines = "";
guilines += "Select a string $title selectedString Choice";
guilines += "[Mary] [Had] [A] [Little] [Lamb]\n";
setGUIBuilderV2Info(guilines);

}

/**
* This is called when the network is forcably stopped by the user.
* This should be over-ridden with the desired tasks.
* <p/>
* We need to override this method to quit our paused thread
*/
public void stopping() {

super.stopping();
stopped = true;
synchronized(this) {

unitThread.notifyAll();
}

}

/**
* Called a parameters is updated (e.g. by the GUI)
*/
public void parameterUpdate(String paramname, Object value) {

// Code to update local variables
if (paramname.equals("selectedString")) {

selectedString = (String) value;
System.out.println("selectedString = " + selectedString);

// We need to check that the value is not an empty string as
// Triana updates parameters at
// intialisation time and we don’t want that to trigger here
if (!(selectedString.equals(""))) {

stringSelected = true;

synchronized(this) {
unitThread.notifyAll();

}
}

}
}

}

67

Symptom Solution
No tools in the toolbox tree remove the Triana resource files and restart.

See page 68

Table 4.1: Trouble Shooting Symptoms

4.4 Trouble Shooting

4.4.1 Triana Resource Directory

Triana stores its settings in a special directory which can be found in the user
home directory, the location of user home is specific to your operating system
and system user name but typically on linux or unix based systems it will be
designated by the ∼ symbol, so typing cd ∼ at the command line should take
you to your home directory. On windows the user home directory is typically
found under C:\Documents & Settings\<username>\.

Under the user home directory there is a special hidden directory created by
Triana called .TrianaV3Resources. This contains all of the settings that Triana
stores in various files. If you have upgraded Triana or it is not behaving as
expected, for instance no tools or toolboxes are showing up in the toolbox
tree, delete the whole directory. Next time Triana is started it will recreate the
directory with the default settings.

68

Index

.TrianaV3Resources, 68

auto commit, 17
auto connect, 26

build, 4

classpath, 28
compiler, 27
compiling, 4
compound components, 18
Copy, 11
creating a toolbox, 55
Cut, 11
CVS, 48

data types, 7
Delete, 11

edit
nodes, 21
toolbox root, 56

editing, 14
extended tool tips, 26
external tools, 26

filtering
tools, 7

Find, 11
Flush, 11

general options, 26
Group, 11
grouping, 18

Help, 11

html browser, 27

menu
main window tool menu, 9,

12
menus, 10

New, 11
Node Editor, 21
node editor

short cuts, 23

Open, 11
Options, 11
options & settings, 25
output node

increase number, 21

parameter, 20
auto commit, 17
update policy, 65

parameter panel, 64
Paste, 11
pausing

units programatically, 64
Print, 11

Reset, 11
restore defaults, 28
restore previous, 26
root dir, 55
rubber banding, 14
Run, 11
run, 4, 17
Run Recorded, 11

69

save
group tools, 18

Save, Save As, 11
searching

toolboxes, 7
Select All, 11
selecting tasks, 14
short keys, 11
Show Properties, 11
Stop, 11

taskgraph
run, 17

text editor, 27
tool

directories, 54
filters, 7
main window context menu, 9,

12
programming, 54
searching for, 7
wizard, 57

tool bars, 11
tool tips, 26
toolbox

new, 55
new root, 55
root, 55
searching, 7
structure, 54

Triana
$TRIANA, %TRIANA%, 4
compiling, 4
download, 4
environment variable, 4
run, 4

Triana Data Types, 7
Triana resource directory, 68
trouble shooting, 68

Ungroup, 11

unit
grouping, 18
parameter, 20
pausing, 64
selecting, 14

workflow
editing, 14

Zoom In, 11
Zoom Out, 11

70

