Kepler: An Extensible System for Design
and Execution of Scientific Workflows

=

Y

User Guide

* This document describes the Kepler workflow interface for design and execution of scientific
workflows. It is based on Ptolemy Il overview documentation, volume I.

TABLE OF CONTENTS

1
2

L1000 od 1 o] o PSS T 1
(1 [0 TN T o =T USSP 2
2.1 Exploring and Executing Pre-built Models...........cccccooiniiiiiiiiinie 3
2.1.1 GEON Mineral Classification WOrkflowccocevviineniiiininiicicieen, 3
212 RUNNING @ WOTKFIOW........coiiiiiiic e 4
2.2 Creating a NeW MOdEL.cceiiiiiiiicc e 6
221 The WOrKFIOW EQITOr........cooiiiiieeec e 6
2.2.2 Creating @ WOIKFIOW.........cccvoiiiieciece et 6
2.2.3 SaVING @ WOTKFIOW ..o s 8
2.2.4 Actors, Ports and Relations.coovieiiieiiiiiiseee e 8
2.24.1 AddIng @ RelatiONcc.eoiiiii i 8
2.2.4.2 POIYMOIPNIC TYPES ..eveeieeieeiieitieiestee e te e et sraesae e sneesae e snee e 9
2.2.4.3 AAAING POIS ..o e 9
2.2.5 (000 0] T 1] | (= 1 (0] £ SSS 10
2.3 Prototyping WOIrKFIOWS.cc.oiiiiiiiiie it 11
0] -V ST RS UPOTPRP U PRPRPRON 12
3.1 Process NetWOrKS (PN). ...cc.eoiiiie e 12
3.2 Synchronous Dataflow (SDF).......ccccceieiieiieieiie e 13
ot (0] g I o] 2=V = TSP 13
4.1 Data ProCeSSING ACIOISuiiieieeie et e see et e et e e sreenaenree e 13
4.2 DISPIAY ACLOIS ...ttt nre e enes 14
4.3 Various Execution ENVIronments ACLOIS.........covrererireninienieeee e 14
MOTE EXAMPIES ...ttt ettt sttt eas 15
5.1 GEON Map Information Integration Workflow.c.cccccovvvveviininenncnnn, 15
5.2 Seismic Waveform Modeling WOrkflow...........ccccooieiiiiiiiniece 17

5.3 Database QUEry MOUEL.c.cooeiieiiiie e 18

1 Introduction

The Kepler project [1] is a cross-project collaboration (see [2] for a list of participating
members) to develop a framework for design, execution and deployment of Scientific
Workflows. Kepler is built on top of Ptolemy Il API for heterogeneous, concurrent
modeling and design. Ptolemy 11 is an ongoing project at UC Berkeley [3].

Scientists in a variety of disciplines (e.g., biology, ecology, geology, astronomy) need
flexible means for accessing scientific data and executing complex analysis on the
retrieved data. Such analyses can be modeled as 'scientific workflows' in which the flow
of data from one analytical step to another is described in a formal workflow language.
The Kepler project's overall goal is to produce an open-source, extensible scientific
workflow system that allows scientists to design scientific workflows and execute them
efficiently using emerging Web and Grid-based technologies to distributed computation.

Ptolemy Il is a system for modeling and executing workflows that provides a core
infrastructure to Kepler. It provides support for dataflow-oriented models which is a very
important characteristic of scientific workflows. The Ptolemy Il system provides a
convenient graphical user interface for designing and prototyping workflows. This
graphical user interface is called “Vergil”. The system also comes with an excellent and
comprehensive documentation and can be easily used and extended. The Ptolemy II
system supports multiple, precisely specified execution models, called directors.
Directors implement the execution semantics and are responsible for the scheduling of
the execution of workflows at run-time. Workflows can be nested arbitrarily. The
different hierarchical units (a.k.a. sub-workflows) in a workflow can have different
directors. The sub-workflows can inherit their execution semantics from the parent, or
introduce a new local director.

The focus of Kepler is on actor-oriented design. Actors are re-useable components that
execute and communicate with other actors in a scientific workflow through input and
output channels. Kepler provides a large variety of computational models, inherited from
Ptolemy II. Scientific workflows are often dataflow-oriented and thus in most Kepler
models either of two computational semantics are used, Process Networks and
Synchronous Dataflow. The details of these two directors will be discussed later on.

Kepler inherits Ptolemy I1’s Vergil graphical user interface. The Vergil interface is an
intuitive tool for designing, prototyping and executing scientific workflows. The interface
serves as an editor for Kepler’s workflow modeling language called Modeling Markup
Language (MoML). MoML is an XML description of a Kepler workflow. Workflows in
XML format can be easily shared with other scientists.

Kepler is an extensible system. Developers can easily add functionalities to the system
according to scientists needs. End users can also extend the actor library by using the web
service harvesting capabilities to import and execute new system components.

Kepler provides a large variety of scientific tools, such as:

- Access to local and remote data through web and grid services. Kepler provides a
generic component that instantiates itself to perform remote calls as if they were
running on the local machine.

- Generic tools that may be used in diverse scientific workflow belonging to any
scientific discipline, e.g. math actors, conversion actors, etc.

- Various display, user interaction and communication tools such as browsers,
graph plotters, email and SMS actors.

- Domain specific tools; actors that were developed to serve a specific field in
science domain specific actors,

- A prototyping tool for designing workflows and sharing ideas with other
scientists.

2 Using Kepler.

Kepler’s Vergil interface allows the user to explore and execute pre-built models or
construct new models. The application can be started by either typing $PTII/bin/vergil
from the command line or selecting Ptolemy Il -> Vergil-full, in the start menu. Once the
system is up, you will see the “Main window” in figure 1.

Fﬁfile:,.-"l::,.-"UtiI,.-"Projecl:s,.-"PtolemyII,.-"ptII3.l].2,.-"kepler-index.html _ | Dlil
Filz wiew Help

Kepler: Grid-enabled scientific workflows 2l
.'1 K‘epl er Welcome to the KEPLER Ptolemy based workflow tool. You can select from one of the
m example worlkflows below or create your own by going to the file menu and selecting
- new/graph editor. Please send any questions/cormments to our developer mailing list at
q_. kepler-dewi@ ecoinformatics. org,
...-.____/ EEPLER is a collaboration between computer and domain scientists with the SEEK

project, the GEON project and the SDM Center,

Worflow Description
EML2 Sitnple Plat A workflow to test the EML 2.0 ingestion actor.
Example
Prometor Identification A workflow that tests a number of the 5ciDAC actors
Workflow inchuding the genbank web service query actor and the
BLAST actor.
G E .N Generic Web Service An example workflow that demonstrates how two

LYBERLMFRASFHUL | UKE
FOR THE GEOSCIENCES

Cotnposition Exarnple WEDL-hased web setvice componetts could be linked to
T each other using X3LT transformation and browser user
Ptolerny Il interface commponents.

GEOM Mineral Classifier A workflow for modal classification of Igneous rocks.

Dratabase Cu IS A workflow that tests a generic database query actor and
Dratabase O Dp2 shows the query result using a browser-based user interface.

GECQM Map Workiflow — GEOM geology map integration worlcflow using web services. -
|

Figure 1. Kepler welcome window

The examples in the welcome window show the cross projects collaboration (see [3]-[5]
for participating projects) that constitute of the Kepler project. Kepler can be used for
modeling scientific workflows assisting geologists, ecologists, biologists and many other
scientists. The welcome window also refers to the Ptolemy Il project main window,
where you can view more examples under quick tour.

2.1 Exploring and Executing Pre-built Models

Selecting one of the example links will open a model in a Vergil graphical editor and
would allow the user to view, edit and run the workflow. Another way to explore a pre-
built model is by selecting Open File/Open URL from the File menu and pointing to a
MoML (XML) file.

2.1.1 GEON Miineral Classification Workflow

Selecting GEON Mineral Classifier will open a GEON workflow for modal classification
for naming rocks (figure 2). Mineral classification is being performed in several iterations
of finer descriptive levels. At each iteration, a sample point is classified within an
appropriate classification diagram using a point-in-polygon algorithm. According to the
region of the point in the diagram and the sample mineral abundance, a next level
diagram is chosen. The process terminates once the selected region represents a rock
name.

The user needs to provide a sample id from a rock dataset along with a link to the
classification diagrams dataset. The model then feeds a Classifier actor with mineral
abundance, retrieved from the rock database, and a set of classification diagrams, and the
Classifier outputs a rock name.

iH file:/C: /Util /Projects /PtolemyIl,/ptI13.0.2/ classifier.xzml 10 =|
File View Edit Graph Debug Help

[Zlzl3a|=z|Z|p || @|»|m |||

| utilties PN Director . . .
| | director library Modal Classification for Naming Rocks.
J actor likrary
|) more libraries Retrieves classification Points from
| Juser library a rock database and classifies it
with a dataset of rocks diagrams.
Rock Dataset
sslD N
£ zr—f—]

CLASSIFIER

Diagrams Data Result

O

Diagra(org.geon. DiagramTransitions
between them.

Figure 2. GEON mineral classifier workflow

The Classifier is the process that performs the iterative algorithm described above. It is a
composite actor (an hierarchical component, indicated visually by a red outline), which
means that its implementation is itself given as a block diagram. You can look inside the
Classifier sub-workflow to reveal the implementation by right clicking the actor as shown
in figure 3 (Composite actors are discussed in more details later).

CLASSIFIER

=0
Configure (Ctrl-E) ChrlH+E
Customize Mame
Get Documentation
Canfigure Parks
Set Icon

Save Actor In Library

Listen to Actar

Look Inside (Cbr+L) ChrlL —— e e

mineral composition Inside the classifier S MextDiagram regionirock nama
MNet

e e level diagran

.
L4

irmnations table |
Calculates the point according region diagram b
to f aral info and the
diagram coordinates
GeatPaolnt "
minsral compostion [polnt PointinPolygan Levels Region
- p— E]
diagrams and transitions Diagram:w. Ll ICIUE]
. | Q Imvan e Calculates the region of BrowserDisplay
= = . the point in the diagram.
. diagram Diagram ToPolygons | i this is the final level L
E.'I: gra II',\.EI"U - oulpuls M8 Fock name | h—
e 3 14
E

The diagram used in this lewel A palnter o the

first diagram identifier
next level diagram -

Figure 3. Looking inside the Classifier implementation

Inside the classifier. The Diagrams actor holds all the diagrams information (SVGSs)
and the transitions between them. It receives a diagram identifier and outputs the
appropriate diagram to be used in the current iteration. The DiagramToPolygons actor
converts an SVG diagram into polygon objects. The GetPoint actor receives the mineral
abundance and the diagram’s coordinates and calculates the sample point. Then a
PointInPolygon actor is used. This actor consumes a classification point and a set of
polygons and outputs the point’s region along with a BrowserDisplay of the point within
the diagram. The NextDiagram actor is then invoked to calculate the next iteration’s
diagram.

2.1.2 Running a Workflow

The Rock Classification workflow can be executed in two ways. You can click the run
button in the toolbar, or select the “Run Window” in the View menu and then click on
Go. The interface also provides other execution control buttons to stop, pause and resume

the execution. The result of the Classifier workflow execution is shown in figure 4.
Notice the browser display of each iteration of the classification.

] ﬂ Fibe /O 0l Projects /Poolemy L pE L 300.2 /classifier somil ‘inlﬁl

Fie ‘ew Dobug Help

Resul
Ga I Pauzs l Resune g l
janorthoslce
Mods| parameiers:
classifier has no paramelers.
Director parameters:
inftinlCususCapacity: 1
maAdirumaususCapacty [psoig
rLevals region

diorice gabbro anothosice

jmnorthosice

T .o m [=1E%
Do 0 e fpoww Lok b [i | B =
|2 = 943 Bt Gewim gete *| | B ER Wew Fpvoes Took Hep . |
o e e c u il - o= oo @ A Disewch GlFavorkes | @ueds (§ *|
LH | 1
| 11 | Agcrass (] colmyerasng @] oo | Google |]
EVE dioritn gakbm —
lewel 2 .
angribogite
A al
Ps O
i 'I'_ T i i i:i : EE] E."P Compker &

Figure 4. Classification result: The rock name displayed on the Kepler run window and a browser
display of the classification steps

2.2 Creating a New Model.

Selecting File->New->Graph Editor in the welcome window, will open a fresh Vergil

graph editor. You should see the window shown in figure 5.

Fila ‘figw Edit draph Cebug Help

mEERDOCEEED

) kil

) chirechor Bbvany
1 =ctor lNbrary
__lmorelibranes

fibrary af components

RO VIEQienT area

o) x|

moded-building area

Figure 5. An empty Vergil graph editor

2.2.1 The Workflow Editor

The model-building area canvas in the right is the area where the block diagram is
created. On the top left pane there are libraries of objects. Double clicking these libraries
expands them and lists their objects. These objects can be dragged onto the model
building area for use within a model. To begin with, the model-building area on the right
is blank. The bottom left pane provides a smaller image of the whole model and allows
the user to zoom and navigate into specific areas of the model-building canvas.

2.2.2 Creating a Workflow

Let’s create a workflow for displaying a user expression. Double-click the actor library
on the library of components. Select an Expression actor from the math library, drag-and-
drop the actor onto the canvas on the right. Drag a Display actor, from the sinks/generic
sinks library, onto the canvas. Drag a connection from the output port of the Expression
actor to the input port of the Display actor. So far we created a graph of objects. Now
let’s give a meaning to the graph by assigning a director which provides the semantics of

the flow (directors are further discussed later on). Expand the director library and drag
the SDF Director onto the canvas. Your workflow should look something like figure 6.

lg Unnamed

File Wiew Edit

Graph Debug Help

=10 %]

| Z[z]@]=[Z]» [m]@]® [&[>]=]]e]

|| utilties:
4 director library
< DF Director
----- B E Director
----- B oy Director
----- B= Fsm Director
----- B= =P Director
----- B= o1 Director

e §

----- B CTEmbedded Director
----- = pirectar

SDF Director

Exprassion Display

= |

[Pr—
|

Figure 6. A simple workflow example

Assign the Expression actor with an expression by either double clicking the actor icon or
right clicking the actor icon and selecting “Configure”, as shown in figure 7. In the
expression parameter, type an expression, e.g. P1, and commit. The model is now ready
for execution. To run the model, either select “Run Window” in the View menu and click
on Go, or click on the run button in the toolbar.

SOF Director

Exprassion
Pl

Configure (Cir-E

Cuskomize Name

Get Documentation
Configure Ports

Set Icomn

Save Actor In Library
Listen to Ackor

Set Brealpoints

Lock, Inside (Crri+L)

Display

=n

CtriH-E

CtrL

—

Edit parameters for Expression

:\?) exprassion:
Commit I Add

I

| memove | Edi stytes Help cancel |

Figure 7. Configuring parameters

2.2.3 Saving a Workflow

You can save the model by selecting “Save” in the File menu. This option generates an
XML description of the model called MoML (Model Markup Language). Now the model
can be reopened and shared with other scientists.

2.2.4 Actors, Ports and Relations.

Actors are components that execute and communicate with other actors in a model.
Actors method of communication is through ports. Values transported through actors
ports are encapsulated as tokens. A port can be either an input port, an output port or
both, and it can either support a single or multiple connections (represented as black and
white ports correspondingly). E.g., the Expression has a single-port output port; the
Display has a multi-port input port. Each connection, which is a path from an output port
to an input port, is treated as a separate channel. A single port can be linked to at most
one relation.

2.2.4.1 Adding a Relation

Suppose we wish to route the output of a single port to more than a single relation. E.g.,
route the output of the Ramp actor to both the Display and the SequencePlotter actors (as
shown in figure 8). If we simply attempt to make the connections, we would get an
exception as shown in the figure. Exceptions are normal and common in Kepler. Their
purpose is to assist the user constructing a model, by notifying of anomalies. Exceptions
in Kepler are very clear and easy to understand and repair. Most common exceptions are:
missing a director; trying to run a model without its semantics, type mismatch, e.g.
connecting a port of type double to a port of type string, and number mismatch, as
observed here, trying to make several connections to a single port without an explicit
relation.

In order to direct the output of the Ramp to the other two actors, we need to add an
explicit relation in the diagram. A relation can be used to broadcast an output from a
single port. A relation is represented in the diagram by a black diamond and can be
selected by clicking the black diamond button in the toolbar.

Select the connection between the Ramp and the Display and delete it (using the delete
key), then connect the Ramp output and the Display and SequencePlotter inputs to the
relation. Now the Ramp single port still has only one connection to it, a connection to a
relation.

-ioixi

i IESEED

SOF Direcior

Click here to
o create arelation

of <l j -

=: - —
Eror srccunksred in: = ‘

<hrik; port="Ramp, cutpt” relsbon="relgtiord"
Attampt ko bk mors than ore relstion to & singls port.
i elenamed Object> Ramp oot snd | <Unnamed Obct > relsbionZ

[Ship elment I?.Dr\efrmotr\ors-l Mymrraml Carce] [

SequencoPlotior

Figure 8. Adding explicit relations
2.2.4.2 Polymorphic Types

Ports can have a type to specify the tokens that can be passed through them. Most actors
in Kepler are polymorphic, meaning that they can operate on or produce data with
multiple types. In the example of figure 6, the Expression can produce several different
types (e.g. string, int) and the Display can consume several different types. The behavior
may even be different for different types. E.g. Multiplying matrices is not the same as
multiplying integers, but both are accomplished by the MultiplyDivide actor in the math
library. Kepler includes a sophisticated type system (inherited from Ptolemyll) that
allows this to be done efficiently and safely. It also includes a run-time type checking
mechanism using a type lattice, which represents allowed data type conversions, to
guarantee consistency of linked actors during program execution. In case of a type
inconsistentency, an exception will occur.

2.2.4.3 Adding Ports

Ports can also be added or removed to/from actors. Right clicking an actor and selecting
“Configure Ports” will bring up the dialog shown in figure 9. This dialog lists all of the
actor’s ports information. To add a port, click on “Add” and type a port name. Then
specify whether it is an input port, output port or both. You can also set the type of the
port, although it is not always necessary, the system can infer its type from its context.
Ports can later be renamed by right clicking on them and selecting “Customize Name”.

Configure ports for Expression il
oLtput: autput type: output: cardingl dirgction:

@ p gt & BRGE C multiport PULEYPE: oouble B IEAST vl
LY M type: Iim . cardinal direction: ST W

" input - output C rultiport

Commitl Add | Removel Help | Cancell

Figure 9. Ports configuration dialog

We modify the example of figure 6 by adding the Expression actor an input port, X, of
type double, and changing the Expression parameter from “P1” to “X + PI”. We also add
an ExpressionReader actor (found under io) that reads and evaluates expressions from a
specified file. Each line read and evaluated by ExpressionReader is fed into the
Expression actor input, which adds a “PI” to it and outputs the result. The modified
workflow is shown in figure 10.

! autput
O[> b= [de]> 15 || @ _nix
: File Help
SDF Director = =
5. 9073926535598 &

6.1415926535395

Display 173. 1415926535598 i

5. 3595744520455

ExpressionReader Expression
X+Pl H
1 t—--—-(- =

Tnput file _Ij
5. 658 4 | =

3 T ———
34 W 5 |
E

Figure 10. Adding ports

2.2.5 Composite Actors.

Kepler supports hierarchical models. These are models that are nested within other
models. Such components are called composite actors. Composite actors are used for
various purposes; to improve the visual appearance of a model, to avoid repetitive
structures in a model, e.g. if a model contains several similar sub-models (that may differ
only in parameters), the sub-model can be packaged as a composite actor and this actor
can then be used instead of each sub-model, and to support multiple execution semantics
in a single model, recall that Kepler allows nested models to have a different semantic
then their parent model, thus using a composite actor this capability can be achieved.

Consider the GEON mineral classification workflow of figure 2. It uses a composite actor
called Classifier. Without a composite actor, the workflow would look as complicated as
the one in figure 11. In the classifier model the user needs only specify a row identifier
from a Rock database, by setting the ssID parameter, and the dataset information, and the
model outputs the rock name. Thus the user needs not be concerned with the actual
implementation of the classifier algorithm in order to run the model and it can be
considered as a “black box”.

In order to simplify the workflow, we create a composite actor, Classifier, grouping all
actors within the loop, by highlighting all of them (creating a bounding box with the
mouse) and selecting “CreateHierarchy” from the Graph menu. We rename this
composite actor Classifier, by right clicking on it and selecting “Customize Name”. This
actor can also be saved to the actor libraries for later use, by right clicking on it and

10

selecting “Save Actor In Library”. Thus a user, not familiar with the details of the
classification algorithm can simply select the Classifier actor from the library and use it
within a workflow.

Looking inside the Classifier will reveal its content in another graph editor. Notice that in

this model the Classifier sub-workflow shares the same semantics/director as its hosting
model. In order to introduce a new local semantic, simply drag a director from the library
to the sub-workflow canvas.

e Modal Classification for Naming Rocks.

Retrieves classification Peints from
a Rock database and dassifies it

M - Uses the transitions table, the regio
with a dataset of rocks diagrams. e I

and the mine nfo to retun the
dentifier of the next level diagram

Rock Dataset

5D NesDiagram Result

- ineral abundance mineral compogtion
it 27— + po

transtions table,

Calculates the pointace
to the mineral i L

Level's Ragion

=

BrowserDisplay

PaointinPalygan

Diagrams Data

Calculates the region of
the pointin the diagram.
If this is the final leve!
outputs the rock name.

Diagrams and transitions
betwesn them

{1}

The diagram used in this leval.

A paointer to the
nex level diagram

Figure 11a. The GEON mineral classification with no composite actors

Inside the classifier

PN Dirscior Modal Classification for Naming

mineral compositian NesDiagram
Igneous Rocks.

regionirock name

~ mineral Sompositon
o Next P

Retrieves classification Points from the
Virginia lgnecus Rock databdse and classif
it with the Ignesus rocks didgrams.

Calculates the pointaccording
o the minaral info and the
diagram coordinates

GetPoint

\irginia Rock Dataset

Level's Region

mineral composition,

PointinPolygon

diagram's
T

Caleulates the region of
tha pointin the diagram.
If this is the final level
oulputs the rock name.

BrowserDisplay

The diagram used in this level

Apalnter o the
nexi level diagram. |

first diagram identifier

Figure 11b. The GEON mineral classification using a composite actor

2.3 Prototyping Workflows.

Kepler also serves as a convenient tool for designing and prototyping workflows. The
system allows scientists to prototype a workflow before implementing the actual actor
code needed for the workflow execution, by using a design actor. Thus scientists can
share and discuss their models with colleagues and later generate the actual application.

11

Kepler’s design actor is created by selecting “New Actor” from the View menu, which
brings up the dialog shown in figure 12. The design actor can be seen as a “blank slate”
which prompts the scientist for information about an actor, e.g., the actor’s name, and the
number, names, and types of its input and output ports. Once the user has prototyped an
actor, a corresponding stub is added to the user’s library. The user can then use this stub
on the workflow canvas to prototype a workflow.

T =0 x|
o — SR B!y i A clioe
L — [e] Sampieactor
‘ more lorares
g Oy
T —— R ————
il et SampleActor
Bl Bl
w* "!'l:'* &
cee |

Figure 12. The design actor tool

3 Domains.

A key innovation in Kepler (inherited from Ptolemy I1) is that, unlike other design and
modeling environments, there are several available models of computation that define the
meaning of a diagram. A diagram mainly specifies the connections between the model
components, whereas a director provides a meaning (semantics) to a diagram. It specifies
what a connection means, and how the diagram should be executed. In Kepler
terminology, the director realizes a domain.

In Kepler most models are dataflow oriented. In a dataflow model, actors are invoked
(fired) when their input data is available. Kepler supports two domains for handling
dataflow models, Process Networks (PN) and Synchronous Dataflow (SDF). These
domains are discussed below. For details on other domains see [7].

3.1 Process Networks (PN).

The process networks (PN) domain models a system as a network of processes that
communicate by sending messages through channels that can buffer the messages. The
sender of the message need not wait for the receiver to be ready to receive the message;
however the receiver is blocked while trying to read from an empty channel until a
message becomes available on it.

In the PN domain, the links represent sequences of data values (tokens), buffered as a

FIFO queue, and the processes (actors) represent functions that map input sequences into
output sequences. Multiple parallel processes can execute simultaneously. The sequences

12

of values are completely determined by the model and thus this model defines a
determinate computation.

3.2 Synchronous Dataflow (SDF).

The synchronous dataflow (SDF) domain handles regular computations that operate on
streams. SDF is a special case of process networks where the order of invocation of the
actors (execution order) can be determined statically from the model; it does not depend
on the data that is processed, i.e., the tokens that are passed between actors.

4 Actor Libraries.

Kepler contains libraries of reusable components, called actors, which are connected to
other actors to construct a model. Actors can act as data sources, sinks (various displays),
data transformers, analytical steps (e.g., Matlab scripts), or more generally any
computation step which can be invoked as a (web) service. Originally aimed at signal
processing, Ptolemyll provides Kepler with a lot of math and filtering functionalities. In
this section we give an overview of the actors provided in the actor libraries. We focus on
the Kepler extensions to Ptolemyll. More information is provided in [8].

4.1 Data Processing Actors

The first set of actors discussed below includes data processing actors. Kepler provides
various actors for data processing tasks, such as database access and querying actors, file
processing actors, and data transformation actors, transforming data from one format to
another. More data processing actors are found in [8].

DBConnect. A database connection actor. Receives database connection information
from the user, either by selecting a connection link from a DB driver repository, or by
providing the database URL, user-name and password. The actor returns a reference to
the database connection (wrapped as a database connection token). The connection can
later be used by each actor accessing the specified database.

DBQuery. A database query actor. Takes as input a database connection reference, an
SQL query, and a result-type parameter, indication whether the query result type; XML,
record or string and whether to output the whole result set as a single token or as a
sequence of token, each row individually. In the future we plan to add GUI-enable actors
that support query formulation in a visual query-by-example style.

XSLT. An XSL Transformation actor. Takes as input an XML stream and a matching
XSL file URL and transforms the XML content to HTML.

FileToString. A file processing actor. Takes as input a file URL and returns its content as
a string token.

FileToArray. Another file processing actor. Returns a file content as an array.

13

SVGToPolygon. An actor that takes as input an SVG file URL, representing a diagram,
and generates Polygon object out of the diagram components.

4.2 Display Actors

The next set of actors includes visualization and user interaction actors to provide a
convenient interface for user control and input as well as output. Kepler also provides
through Ptolemyll other visual capabilities such as a text display and plotters, more
information on these components is found in [8].

BrowserDisplay. An actor that takes as input a file or a URL and displays it on a web
browser.

BrowserUl. Extends the BrowserDisplay actor. This actor supports a browser interface
not only as a display method but also as a mean for convenient user interaction, for easily
entering inputs and selections. The actor accepts a file, a URL or an HTML content and
either displays the file (as in BrowserDisplay) or returns user selections in XML format.

UserlInteractiveShell. An actor that provides a text interface for passing user inputs to the
following component in the flow.

4.3 Various Execution Environments Actors

The following set of actors presents the several different execution environments
provided by Kepler. Actors in Kepler can either execute locally (as seen so far), or on
distributed environments, using web and grid services. Web and grid represent a “black
box functionality that can be reused without worrying about the service implementation.

Kepler also provides (through Ptolemyll) support for native language interfaces such as a
Matlab actor and a Python actor. All of these actors behave as if they were atomic steps
in the workflow execution. Furthermore, any java application can be easily deployed as a
new system component.

WebService. A generic actor that can be instantiated with any WSDL description of a
web service. The user needs to provide the WSDL URL and select a desired operation,
and the actor specializes itself to act as a proxy for the web service being executed. Using
the WebService actor, any code that can be deployed as a web service, not necessarily a
java code, can be used as an actor in Kepler. Kepler also provides a Web Service
Harvester capability for importing web services found in a repository.

GridService. Similar to a web service, specialized for executing remote services on the
grid.

GridFTP. An actor for performing grid-based data access.

Proxylnit. An actor for certificate-based authentication.

14

GlobusGridJob. An actor for grid job submission.

5 More Examples

5.1 GEON Map Information Integration Workflow.

The GEON map information integration workflow (figures 13 and 14) was designed for
integrating State Geologic Maps using rock and geologic age ontologies. This model
specifically demonstrates the use of web services within a workflow for using distributed
processes without possessing the actual implementation.

The model uses the datasets from states covering rocky mountain region as a test bed.
These datasets are very heterogeneous; Different representation formats: BLOB, Shape
file, GML. Structural differences: different schemas table names, field names, etc.
Semantics differences: different conventions as the Canadian GS report and the British
report and use different operating systems. To integrate these heterogeneous dataset an
ontology service is being used.

The user needs to provide the datasets to be integrated along with the ontologies to be
used as the initial query. The query is sent to the ontology service, which is a WebService
actor instantiated as an ontology data method. The ontology service resolves the datasets
differences and returns a color schema for presenting the datasets. Then an image query
service is used for accessing datasets from different systems. Eventually an image
assembly service is invoked to integrate the results and expose them on a web browser
using the BrowserDisplay actor (figure 15).

15

Error!

Geological Map Information Integration Workflow

SDF Director
A subwordlow to map the
output schema of the entology
;i:ae;at:ﬁ;ri:g;g:;? smivice to the input sshema of
for different gates DGy ez
CreateExpressionFromQue DataMapper
- OntologyData_rewriteQuery P TY UtahQueryEx reﬂg:: PP
InitialQuery o ' Cjey paves
htp:... | MevadaQueryExpresson,
The client regued for - - _
generating integrated This service handles ssmantic FlewriﬁenQuery
map of geological discrepancies acmss scurce &
formations in XML format, datasls resolvesa sandard
geclogic concept to the specific ImageAssemblyRequest

concept at the datasst. ,_

ImageAssemblySenice_exacute

i
-

BrowserDisplay

[

h

http:i...

CQuery results reprasent a combination
of XML documents, image files, or
handle to remote files Thisweb
service helpsthe creation of creates
represents an additional mapping
sarvice capable of producing map
composites on demand, asone or
saveral image filesthat can be
displayed at the client.

Figure 13. Geologic map information integration workflow

Error!
Host
Accapts the quary for salacting
spatial data and retums the URL
to the result of the query salaction.
Utah_ImageS._LayerlD ImageCuerySenice_getExtract—Utah ldahoDisplay
.
UtahQueryExpression B h L hitpi/...
Arizona_ImageS_LayerlD ImageQuerySendice_getExtract ArizonaDisplay
4. 4.
ArizonaQueryExpression D M L htpd... |
CreateRequestFromResult
request
Envelope _'.;' eql
MevadaQuegExpression &]1: v »
’—4 2 ExpresionsDisplay A Java-based transformer to
map multiple output schemas
of the query sanvice fo the
} input schema of the assembly
IdahoQueryxpression senice,

Figure 14. Inside the data mapper

16

Error!

2} GEON Map Integration Demo - Microsoft Internet Explorer S|
File Edit View Favorites Tools Help | :r'

. ~ n =
.6 . 9 e 3. 1A . »

@ Back - () x ,y: _ﬂ | P Search ¢ Favorites @ Media 'ez = %ﬁ F

Address I@J http: ffgeon0?.sdsc.edufwebsite fviewer 1fviewer. htm?theTitle =%27Geological HMap Y2 7&esriBlurb =%:27%2F servlet%2Fcom. esri.esrimap. Esrimap Ye3F ServiceName %30 %2 78imsUR. 'I Go

oogle - - Search Web = @& Search Site - Options L |
Gocgh & &) B

. - Powered by
Geological Map Integration Demo for GEON B A IS

Links @ Customize Links @ Free Hotmal dp RealPlayer

[t 23[R 0] 3]]2 | avances B
- T T o o

Layers
5 &
g 2
S
Coastal
Features
[3 3 : L W & Arizons
Ontology Based Query ek} : [F € utsh
: [¥ (" ststes_polygen_ares
Select Query -
Refresh Map |

GeologicAge| _
Composition || [\l
Fabric All

All

Select Datasets

[Arizona
@ Utah

’_’_’_ # Internet
lﬁstartl J @ @ a8 u [= ”J Inbux—Micros... I E: /ovodrivejcjpr... I ZM\crusoﬂ:Pm v| 7java vI 13 untitled - Paint ||@ GEON Map In... |« g@ 5:35PM

Figure 15. Map integration result using a BrowserDisplay actor

5.2 Seismic Waveform Modeling Workflow

The following model (figure 16) shows an initiative in deployment of a GEON Seismic
analysis tool (GSAT). The workflow has not yet been implemented but uses the
prototyping tool, discussed above, as its design method.

The goal of the seismic waveform modeling workflow is to analyze and simulate any
observed regional seismic waveform recorded from any given region on Earth. Using
existing 3D earth models, observed synthetic seismograms (simulations running on
distributed supercomputers) would be generated for different earthquake parameters such
as earthquake depth and focal parameters. These synthetic records are compared with
observed ones to obtain better knowledge about the Earth structure as well as the
earthquake parameters.

InvokeApplication, loads the system. The user selects a map and a desired region
envelope using RenderMap and reads the events and stations within the envelope. The
user can then either select to immediately plot an observed waveform, or to analyze a
synthetic seismogram by running a simulation over a bounding box. Each of the user
selection is captured by a UserEvents actor which processes the requests and directs the
flow accordingly. Both the observed and analyzed seismograms are plotted with a
SeismicDisplay actor allowing the user to compare between them.

17

The synthetic analysis is done as follows; first the user needs to set the simulation
parameters. Kepler provides a convenient browser interface for entering user selections,
using the BrowserUI actor. The simulation is running on distributed machines using a
Grid actor. The resulted seismogram can then be filtered, using the various signal
processing filtering techniques provided by Kepler, and then sent to the display.

InvokeApplication RenderMap UserEvents Browserll PN Director
anding

[» P o

simulation
parameters
File

Copy configuration file

to a supercom puter Execute e3d Copyresults to
(TeraGrid, BlueHorizon, ...). on the Grid the local machine., YPass
SCP1 Grid SCP2 Filter

- :8 » P :.—']

SekmicDisplay
Plots the obsarvad and
synthetic seismograms.

Figure 16. GEON Seismic waveform modeling workflow

5.3 Database Query Model.

The following model (shown in figure 17) demonstrates some of Kepler data processing
capabilities. It queries a database and outputs the result on a web browser. The
DBConnect actor (OpenDBConnection) connects to an Igneous rocks database, as
specified by the parameter dialog shown in figure 18. The query is represented by a Const
actor (found under Source/Generic Sources), which is an actor that produces a constant
output set by its parameter value. The DatabaseQuery actor is fed with both database
connection reference and the SQL query string. It outputs an XML stream of the result
set, as configured by the dialog box of figure 19. Then an XSLT actor is used to transform
the query result to HTML format to be displayed using the BrowserUI actor (the result is
shown in figure 20).

SDF Director

QpenDBConnection

DatabaseQuery
XSLTActor

BrowserU|

Query

[# "salect * from ModalData"

Figure 17. A model for display database query results on a web browser

18

Edit parameters for OpenDEConnection X|

@ catalo; EON database drivers catalog ;I
drivertlame: sun jdbc.odbc JobcOdbcDriver
databaselIRL: idhc:odbo:lgneousRocks
USErnEte: geonrocks
pasaword: [ranannas

Cormmik I Add Remove Edit Skwles Help Zancel

Figure 18. Configuration parameters for the DBConnet actor

Edit parameters for Databasefuery X|
@ oLt Ty pe:
outputEachRow Separately: {

Cormmik I Add Remove Edit Stylesl Help | Zancel |

Figure 19. Configuration parameters for the DBQuery actor

a ¥iryinia Iynevus Ruck Mineral Coinpusilion - Microsull Inbernel Explurer i - |E||£|

Fle Edt wiew Favotites Tools Help |G0c:3]e-| Il $SEarCh ek v| b0 | E19s bl “ﬁ

dmfack - = -) | QAseanh [EFavoites Media CH | By S B

Address I@IZ:'l,UtiI'I,Prnjects'l,kepler'l,lib'l,testdd:a'l,geon'l,temp.html j an

il T o3 T R R L 5, LB 0, T N L T

[271] 24|Balt|more Gabhro Complex T43-1 | 594 | I

| 282 29 Baltimore Gabbro Complex W69 | 176 | 1

[273 31 Baltimore Gabhro Camplex: [TBA-1 | | 1

[272] 32 Baltimore Gabhro Complex [TB-1 | 08| 1

| 278| 33 Balimore Gabbro Complex [W386 | - i

| 280] 34 Baltimore Gabbro Complex [W54 | 3| I

[275 35 [Baimore Gabbro Complex W174 | | -I—Jj
II I 3
[&] pare [[[S vy computer -

Figure 20. Database query result transformed into HTML using an XSLT actor

19

REFERENCES

[1] Kepler: An Extensible System for Scientific Workflows, http:/kepler.ecoinformatics.org

[2] Kepler team members, http://kepler.ecoinformatics.org/members.html

[3] Ptolemy Il project, http:/ptolemy.eecs.berkeley.edu/ptolemy!|

[4] GEON: Cyberinfrastructure for the Geosciences, http://www.geongrid.org

[5] SPA: http://kepler.ecoinformatics.org/spa.html

[6] SEEK: Science Environment for Ecological Knowledge, http://seek.ecoinformatics.org

[7] Ptolemy II domains,
http://ptolemy.eecs.berkeley.edu/papers/03/ptlIDesignDomains/ptlldesign3-domains.pdf

[8] Introduction to Ptolemy 11, chapter 4,
http://ptolemy.eecs.berkeley.edu/papers/03/ptlIDesignintro/ptlidesignl-intro.pdf

20

