
 
Generic Kepler Actors – USER MANUAL 

(Please contact the author(s) for the usage of the domain specific actors when necessary.) 
 
The Kepler actors folder is found under the “Actor Library”. Currently, there is a folder for each 
individual or project effort. Below is a description of the generic actors categorized by the folder 
names. 
 
The SPA Actors 
 
BrowserUI: Given a file path or URL including a CGI-based form, this actor can be used for 
injecting user control and input. It can also be used for efficient output of legacy applications 
anywhere in a workflow via the user’s local web browser. The BrowserUI actor uses the default 
browser in the user’s computer. 
 

 
Figure1. The GUI for the BrowserUI actor 

 
When not configured, as a result of the CGI form execution, the actor just outputs the (name, 
value) pairs in XML format and as separate arrays.  
 
The actor can be configured using the configuration interface to allow for automatic CGI form 
generation. The configuration is made through a text file that imply specifies the name and type 
of the output ports that the user wants to configure the actor for. Please refer to 
BrowserUIConfigureTest.xml under $KEPLER/workflows/test for more information on the 
configuration of this actor. 
 
 
Command Line: Given a command string and optionally one or few of arguments, switches, 
input and output files, the CommandLine actor generates a command and executes it using the 
java Runtime class. 
 

 
Figure2. The GUI for the CommandLine actor 

 
As illustrated in Figure1, the CommandLine actor has the following ports: 
 
arguments: --Input-- Arguments are independent values or references passed to a function, 

command or program, by the caller. The arguments can be basic string constants or 
can be passed into the port from other actors. They can involve the command 
switches that are attached to the argument values. They are listed in the order they 
were attached to the port when the command is being generated. 



infileHandle: --Input--  This port is used if the file accepts an input file instead of a list of 
arguments. 

 
trigger: --Input-- This is an optional port that is useful if  the execution of a command should be 

after the successful execution of another actor. The output of the previous actor should be 
linked to the trigger port of the depending actor for scheduling purposes. It can be hidden 
if not used by turning off the hasTrigger radio button by selecting the configure box. 

 
outfileHandle: --Output-- An output file can be used to store the results of the execution ibstead 

of the standard output. The handle is the full-path of the output file that is 
browsed/given by the output file parameter that can be changed/updated by 
double-clicking on the actor or selecting “configure” right-click context menu. 

 
output: --Output-- The standard output of the command. Broadcasts only if no outfile is selected. 
 
exitcode: --Output-- A true/false output that shows if the command was executed successfully. 
 
All the ports of the CommandLine actor are optional depending on the usage of the actor. 
 

Figure3. The parameters for the CommandLine actor 
 

The parameters of the CommandLine actor (see Figure2) are also used for generating the 
command as well as formatting the output and available ports.   
 
Command: The main part of the command that all the arguments and infile are attached to. The 
full path to the command should be specified even if the command is in the PATH environment 
variable. 
 
OutputFile: Used for browsing/typing the path of the output file that will be used instead 

of the standard output. The path of the selected file will be output from the 
‘outfileHandle’ output port of the actor. 

 
outputLineByLine: Formats the standard output of the actor if no outfile is selected. When 

selected, the ‘output’ output port will broadcast one token for each line 
in the standard output. 

 
hasTrigger: Activates the ‘trigger’ input port of the actor when selected. 
 
In the current version of the actor, the following command types are supported: 
 
   command (e.g. "C:/Program Files/Internet Explorer/IEXPLORE.EXE") 
   command < infile > outfile (e.g. "$HOME/myprog < inputFile.in > outputFile.out") 



   command > outfile (e.g. "C:/cygwin/bin/dir.exe > dirTemp.txt") 
   command < infile (e.g. "/usr/local/bin/myprog < inputFile.txt") 
   command [arg1..argn] > outfile (e.g. "C:/cygwin/bin/perl.exe c:/project/kepler/test/workflows/example.pl > 

c:/project/kepler/test/workflows/example.out";) 
   command [arg1..argn] (e.g. "/usr/bin/perl $HOME/perl_code/example.pl) 
 
This actor will be extended to allow for the following commands: 
 
   command [arg1..argn] < infile > outfile 
   command1 | command 2 (This type of commands need to be able to give the output of all the commands 

instead of only the last one. Currently, only the output of the last command is 
broadcasted. A parameter to switch this on and off will be added.) 

 
 
Email: Given the configuration parameters for the host SMTP server, to and from addressed, the 
Email actor  sends the data that is linked to its ‘messageBody’ multi-port (see Figure4) as an 
output notification email from Kepler.  
 
 

 
Figure4. The GUI for the Email actor 

 
An example usage of the Email actor can be found at ‘$KEPLER/workflows/test/emailTest.xml’. 
 
 
FileFetcher: Given a Globus authentication certificate and a ‘;’ separated list (see Figure5) of 
the full paths of files, the FileFetcher actor copies the files to the localhost destination directory 
specifed by a configuration parameter.(see Figure6)  
 
 

 
Figure5. The GUI for the FileFetcher actor 

 
The actor outputs a ‘;’ delimited list of full-paths of the fetched files. An example application for 
this actor can be found at $KEPLER/workflows/test/FileFetcherTest.xml. 

 



Figure6. The configuration parameters for the FileFetcher 
 
 
FileStager: Given a Globus authentication certificate and a ‘;’ separated list (see Figure7) of the 
full paths of local files, the GridFTP-based FileStager actor copies the given files from their 
localhost paths to a remote destination directory specified by a configuration parameter.(see 
Figure8) 
 

 
Figure7. The GUI for the FileStager actor 

 

 
Figure8. The configuration parameters for the FileStager 

 
 
 
GridFTP:  Given a Globus-grid proxy certificate, and a set of configuration parameters (see 
Figure9), this actor copies a file from any remote Globus source or local directory, to any remote 
Globus host or local directory.  
 
The GridFTP actor can be thought of as a combination of the FileStager and the FileFetcher 
actors without having to copy to/from localhost. The actor has a choice-style selection of 
available hosts for ease of use. If you would like to set a new source or destination hostname, 
please  click on the ‘Preferences’ button on the ‘Configure’ window for the actor and select 
‘Line’ as the style for the parameter you would like to edit/type into. 
 



 
Figure9. The configuration parameters for the GridFTP-based file transfer actor 

 
The GridFTP actor is under a major revision. The documentation for the actor will be finalized 
after the revision is complete. 
 
 
Pause: This actor is used for putting an expected pause in the workflow specification to allow 
for execution to pause until the outputs until that time are reviewed and the workflow is paused. 
This actor is mainly useful for long-running jobs. 
 

 
Figure10. The GUI for the Pause 

 
RunJobGridClient: Given a Globus-grid proxy certificate, a list of input files passed from 
previous actors, and a parameter-specified host and program information,  this actor generates the 
RSL string for a Globus job. It then executes the job and outputs the results and ‘;’ separated list 
of the output file paths. (see Figures 11&12) 
  

 
Figure11. The GUI for the RunJobGridClient 

 

Figure12. The configuration parameters for the RunJobGridClient 
 



StringConst: Given a string or a browsed file path, this actor outputs a string just once. 
This actor is used mainly in providing constant input to any actor in a workflow. 
 
WebService: The WebService actor, as indicated in Figure13, provides the user with a plug-in 
interface to execute any WSDL-defined web service. Given a URL for the WSDL of a web 
service and an operation name that is included in the WSDL,  this actor customizes itself to 
execute this web service operation. 
 
WSDL is an XML format for describing network services as a set of endpoints operating on 
messages containing either document-oriented or procedure-oriented information. The operations 
and messages are described abstractly, and then bound to a concrete network protocol and 
message format to define an endpoint. Related concrete endpoints are combined into abstract 
endpoints(services). WSDL is extensible to allow description of endpoints and their messages 
regardless of what message formats or network protocols are used to communicate. More 
information on WSDL and realted standard can be found at: http://www.w3.org/TR/wsdl. 
 
 

Figure13. The parameters for specialization of the WebService actor 
 
 
The user can instantiate the generic web service actor by providing the WSDL URL and choosing 
the desired web service operation. The actor then automatically specializes itself and adds ports 
with the inputs and outputs as described by the WSDL. The so instantiated actor acts as a proxy 
for the web service being executed and links to the other actors through its ports. 
 



 
Figure14. An example instantiation of the WebService actor 

 
 

The WSDL is parsed to get the input, output and binding information. It dynamically generates 
ports for each input and output of the operation. This customization happens at the configuration 
time of a model. When the actor is fired at run time, it gets the binding information and creates a 
call object to run the model. Using this call object, it invokes the web service and broadcasts the 
response to the output ports. Figure15. below shows two different instantiation of the actor for the 
Blast and DDBJ web services provided by the DDBJ. Example applications and test can be found 
under the workflows section of your Kepler directory. 

 
 

 
Figure15. The GUI for the WebService actor 

 
 
 
 



WebServiceHarvester: Kepler provides a Web Service Harvester capability for importing web 
services from a repository. This feature was developed for conveniently plugging in a whole set 
of (possibly related) services. The web services to import can be searched on a web page or in a 
UDDI repository. Once imported, the web services are saved as actors. These actors can be 
reused in different scientific workflows. 
 
The WebService actor is currently under rebuild. More information on the new features and usage 
of the actor will be given in this manual after the finalization of this actor. Please refer to the 
‘WebServiceHarvesterTest.xml’ under your $KEPLER/workflows/test directory for an example 
usage of the actor. 
 
XSLTTransformer: Given an xml stream as input, XSLTTransformer  is used for  for linking 
“almost but not quite fitting” output port and input port data formats together. The actor produces 
an html stream that can be viewed or queried using the BrowserUI actor. (see Figure) 
 

 
Figure16. The GUI for XSLTTransformer 

 
The configuration window for the XSLTTransformer actor can be viewed by double-clicking on 
the actor or by selecting ‘Configure’ from the right-click context menu. The window displays a 
GUI for browsing the XSL script which will be used to perform the transformation. 

 

Figure17. The configuration of the XSL path parameter 
 
 

Scientific Workflow Example 
 
The current web service components of the Kepler/SPA system have been used in various 
scientific domains, including molecular biology, geosciences, chemistry and ecology. 
  
One example is the “Geological Map Information Integration Workflow” depicted in Figure18. 
This workflow was designed by a geologist to integrate State Geologic Maps using rock and 
geologic age ontologies. This model demonstrates the use of distributed processes within a 
workflow. The details of this workflow can be reached from the SDSIC presentation at 
http://kbi.sdsc.edu/SciDAC-SDM/SDSIC-Integrated.ppt.  
 
 
 
 
 



Figure18. Geological Map Information Integration Workflow 
 

 
The application workflows show how to employ Kepler’s web service components to compose 
distributed scientific workflows. Since web services are often not designed to fit, data 
transformations between the outputs of previous steps and inputs of subsequent steps are usually 
required. For this purpose, specialized data transformation actors (e.g. XSLT, XQuery) have been 
implemented. User interaction and workflow output are performed via a browser actor. Please 
open to ‘$KEPLER/workflows/geo/geonMapHierarchical.xml’ under Kepler to execute this 
workflow. 
 
Another example of the Kepler/SPA powered workflows is the ‘Promoter Identification 
Workflow’ which had been a running application in different forms for 3 years. It is a production 
workflow being used by a biologist to identify likely transcription factor binding sites in a series 
of genes. The process of identifying these sites in a single gene involves a series of tasks, such 
that performing the same series manually for each of a few dozen genes can be quite a repetitive 
and time-consuming process. The PIW workflow solves that problem by allowing the biologist to 
create the workflow once, and run it as many times as he or she desires for any set of different 
inputs. The details of this workflow can be reached at http://kbi.sdsc.edu/SciDAC-SDM/piw-
specification.ppt. The workflow can be reached and executed from 
‘$KEPLER/workflows/bio/PIW.xml’. 
 
Another domain that utilized the Kepler/SPA actors is computational chemistry.  The goal of this 
effort is to develop workflow tools specific to computational chemistry. Due to the current 
explosion of the corresponding experimental data, there is a huge need for computational models, 



which combine various scientific methods, system sizes, and time scales on one hand and allow 
all this to be done in a high-throughput manner on the other hand. However, researchers in 
different fields often face the same problems: Their calculations need considerable computing 
power that fortunately nowadays can be provided by supercomputers and/or clusters which, 
although may need to be accessed remotely or via a grid, making connectivity and bookkeeping 
pretentious. The application programs applied are typically developed by groups of scientists over 
many years, and are highly specific and optimized, but difficult to adapt. Each program nearly 
always has its own proprietary input and output formats, often mixing data and keywords, making 
communication between different application codes difficult and ineffective. 
 
As a first example of this type of workflows, we have developed the Nimrod/G-based Gamess 
execution workflow. This workflow utilizes the XSLTTransformer and CommandLine 
components of Kepler and combines them with some domain-specific knowledge using XSL 
scripts. (see Figure 19) Please refer to http://www.sdsc.edu/~altintas/ieee_manish_apr30_04.doc for 
more information on this effort. 
 

 

Figure19. Computational Chemistry Prototyping Environment 
 
 
The generic components of the Kepler project are applicable to all scientific domains as well as 
non-scientific application domains. Figure20 illustrates an example workflow that utilizes the 
Globus Grid-based components and their usage. 
 
 
 
 
 
 



 
 
 
 

 
Figure20. An example Grid-based workflow 

 
 
Please refer to the test workflows under your Kepler directory for interesting test-level 
applications utilizing these actors. 
 
 
The GEON Actors 
 
BinaryFileReader:  Reads a file or a URL and outputs its content as a sequence of byte 
arrays. The actor extends the Ptolemy FileReader, and can be used to read both ascii and 
binary file formats. 

 
Figure21. The GUI for the BinaryFileReader actor 

 
Inputs:  
 trigger:unknown; a trigger to invoke the actor. 
Outputs: 
 Output:[byte] 
 endOfFile:Boolean 
Parameters: 
 FileOrURL: FileParameter 
 
BinaryFileWriter:  Writes a sequence of byte arrays into a file and eventually outputs the 
file path. The actor is capable of writing both ascii and binary contents. 
 

 
Figure22. The GUI for the BinaryFileWriter actor 

 
Inputs:  
 input: [byte] 
Outputs: 
 filePath:string 
Parameters: 
 FileOrURL: FileParameter 
 
 
 
 



Database Query:  The DatabaseQuery actor takes as input a database connection 
reference, an SQL query, and a result-type parameter, indication of the query result type; 
XML, record, string or noMetadata (outputs columns with no attributes information) and 
the broadcast rate; whether to output the complete result set as a single token or as a 
sequence of tokens, each row individually.   
 

 
Figure23. The GUI for the DatabaseQuery actor 

 
Inputs:  
 dbcon: DBConnectionType 
 query: string 
Outputs: 
 result: XML string / record / string / noMetadata 
Parameters: 

OutputType: choice 
outputEachRowSeparately: boolean  

 
 
OpenDBConnection: A database connection actor. Receives database connection 
information from the user, either by selecting a connection link from a database driver 
repository, or by providing the database URL, user-name and password.  The actor 
returns a reference to the database connection (wrapped as a database connection token). 
The connection can then be propagated to all actors accessing the specified database.  
 
 

 
Figure24. The GUI for the DatabaseConnect actor 

 
 

Outputs:  
 dbcon: DBConnectionType 
Parameters: 

driverName: string 
databaseURL: string 
username: string 
password: string 



SRBAddMD:  Adds user defined metadata to an SRB dataset or collection. Accepts a 
reference to the SRB files system, an SRB remote file/directory path and a list of attribute 
value pairs.  
 
Inputs:  
 SRBFileSystem: object 
 srbFilePath: string 
 conditions: [string]. {“att val”}  
Outputs: 
 existCode: string. Exit status of the operation. 
 
SRBConnect:  Connects to the SRB and returns a reference to the SRB file system. The 
user needs to specify the following connection parameters: srbHost, srbPort, 
srbUserName, srbPasswd, srbHomeCollection, srbMdasDomainHome and 
srbDefaultResource. The connection reference can then be propagated to all actors 
accessing the SRB workspace.  
This actor will create a different connection object to each connected channel to allow 
paralel operations. 
 

 
Figure25. The GUI for the SRBConnect actor 

 

 
Figure26. SRBConnection parameters 

 
 
 
SRBQueryMD:  Queries the SRB metadata from a specific location with user defined 
conditions. The conditions are generated ass follows: 
 

SRBCreateQueryInterface:  Creates an html interface for querying the SRB metadata. 
Will be replaced with a jsp page within a Kepler server. 

 
SRBCreateQueryConditions: Creates conditions for querying the SRB metadata from 
a user xml string conditions, returned by the BrowserUI actor. 

 
 



Inputs:  
 SRBFileSystem: object 
 srbFilePath: string. Collection path to begin querying from 
 conditions: [string]. {“att op val”}  
Outputs: 
 output: [string]. Matching files paths. 
 existCode: string. Exit status of the operation. 
 
SRBDisconnect:  Disconnects from the SRB File system once it gets an confirmation 
that all actors accessing the specified file system have terminated.  
 

 
Figure27. The GUI for the SRBConnect actor 

 
SGet:  Accepts a reference to the SRB files system, a local directory and an aray of SRB 
remote file paths. Downloads the SRB files to the local drive. Outputs the local file paths 
and an exit status. 
 
Inputs:  
 SRBFileSystem: object 
 filesToGet: [string]. Paths to the SRB files to fetch. 
 localDir: string. Where to fetch the files on the local drive. 
Outputs: 
 fetchedFiles: [string]. Paths to the local location. 
 existCode: string. Exit status of the operation. 
 
SRBGetMD:  Returns the metadata for an SRB dataset or collection. Accepts a reference 
to the SRB files system, and an SRB remote file/directory path. Will be extended with an 
option to obtain metadata recursively. 
 
Inputs:  
 SRBFileSystem: object 
 srbFilePath: string 
Outputs: 
 Output: string. The metadata. 
 existCode: string. Exit status of the operation. 
 
SGetPhysicalLocation:  Returns the physical location of a logical SRB path. This remote 
location cannot be accessed through windows. 
 
Inputs:  
 SRBFileSystem: object 
 logicalPath: string. Logical path to SRB file. 
Outputs: 
 physicalPath: [string]. Paths to the local location. 
 existCode: string. Exit status of the operation. 
 
 
 



SProxy:  Executes a proxy command. Currently supported command: 'list directory', 
 'copy', 'move', 'remove', 'replicate', 'create directory', 'remove directory', 'change mode'. 
The actor accepts a reference to the SRB files system, and a desired command with its 
input ports. Outputs the command result along with an exit status.  
 
Commands description: 
 
List directory: 
Lists a remote directory content. 
Inputs: path: [string]. Remote paths to list. 
Output: listedFiles : [string]. Arrays of the contained files paths. 
   exitCode : string.  
Option: outputEachFileSeparately. Whether to broadcast each file path sepearately or the 
whole list at once. 
  
Copy/Move: 
Copys or moves files to a new path. Returns the new file paths. recursively copies/moves 
directories. 
Inputs: path: [string]. Original remote file paths. 
 newPath: string. Location to copy/move.  
Output: copiedFiles/movedFiles : [string]. Arrays of the new file paths. 
 
Remove/Remove directory: 
Removes files/directories. Non-empty directories are recursively removed by remove –r.  
Inputs: path: [string]. Remote file paths. 
Option: -r ; recursively removes files. 
 forward ; output an array of the removed files parent directory paths. 
 
Create directory: 
Creates new directories. Returns the new directory path. 
Inputs: path: [string]. New directories paths. 
Output: dirPath: Created directories paths. 
 
Replicate: 
Replicates a file/directory to a new resource. 
Inputs: path: [string]. The files to be replicated. 
 newPath: [string]. The resource to replicate to. 
Output: newResource: string. The files new resource. 
 
Change mode: 
Changes the permissions of a file or a directory. 
Inputs: path: [string]. Files paths. 
 permission: string 
 userName: string. To grant permission to. 
 mdasDomain: string. The metadata domain. 
Output: exitPath: [string]. The files paths. 
 



SPut:  Accepts a reference to the SRB files system, an SRB remote location and an aray 
of local file paths. Uploads the local files to the SRB location. Outputs the remote file 
paths and an exit status. 
 
Inputs:  
 SRBFileSystem: object 
 filesToPut: [string]. Paths to the files to upload. 
 remoteDir: string. Where to upload the files. 
Outputs: 
 uploadedFiles: [string]. Paths to the remote location. 
 existCode: string. Exit status of the operation. 
  
SRBAddMD:  Adds user defined metadata to an SRB data/collection. Accepts a 
reference to the SRB files system, an SRB remote file/directory path and a list of attribute 
value pairs.  
 
Inputs:  
 SRBFileSystem: object 
 srbFilePath: string 
 conditions: [string]. {“att val”}  
Outputs: 
 existCode: string. Exit status of the operation. 
 
 
SRBReader:  Accepts a reference to the SRB files system and a file name, reads the file 
from the SRB and outputs its content as a sequence of bytes arrays. 
 

 
Figure28. The GUI for the SRBReader actor 

 
Inputs:  
 SRBFileSystem: object 
 SRBFileName: string 
Outputs: 
 output: [byte] 
 
SRBWriter:  Accepts a reference to the SRB files system, an SRB remote file name and a 
sequence of bytes array as input. The SRBWriter actor writes the byte arrays to the 
remote file on the SRB and sends a trigger once it is done.  
 

 
Figure29. The GUI for the SRBWriter actor 

 
 



Inputs:  
 SRBFileSystem: object 
 Input: [byte] 
 SRBFileName: string  
Outputs: 
 trigger: boolean 
 
 
 
LoggingActor:  This actor records workflow execution results from desired actors. Its 
input is type polymorphic, it accepts output token of ‘anytype’ from its connected ports. 
The actor logs the executed workflow. The workflow description can be either moml or 
relational. For each token consumed the actor records its producer, the time stamp and its 
content. The user may select to record the information into a file or forward it to the next 
actor.    
 

 
Figure30. The GUI for the Logging actor 

 
Inputs:  
 input: polymorphic 
 
Outputs: 
 output: string 
Parameters: 
 workflow description type: MoML or Relational 
 operation: Forward information or save to a file.  
 fileName: The file name to which to write. 
 
 



Scientific Workflow Example 
 
Generating Dataset on the Fly. The following workflow utilizes Kepler’s generic actors. It 
connects to a remote database, Gravity DB at UTEP, and queries for gravity points returned in 
XML format. It then uses a web service for generating a dataset, shapefile, from the queried 
points. Prior to invoking the web service an XSLT actor is used to translate the query response to 
the web service expected XML format. The web service returns an XML string that contains  
URLs to the created shapefile and a static image of the dataset which is displayed using a web 
browser.  
 

 
 
The ExtractURL subworkflows demonstrates components-based programming. It uses 
actors for string manipulation. The XML string is first translated into an XMLToken. 
Than an XPath actor is used to extract the desired tag element (here the value tag hold the 
image URL). The XPath actors returns an array of XMLTokens, thus and 
ArrayToElements actor is used to extract each token. The tokens are translated into 
strings and the the begin and end tags are removed to return the image URL. 
 



Datasets Registration Model. The following workflow is used to register annotated datasets 
within the GEON workbench. It uses the BrowserUI to facilitate user annotation input. This 
annotation is translated into DLESE ADN (ADEPT/DLESE/NASA metadata) annotation format. 
A registration web service is used which accepts the dataset URL and the annotation, and 
registers the dataset within the GEON SRB workspace. The web service return a handle, id to the 
registered dataset. Using the returned id, it is possible to validate the registration process either by 
quering a getInformation service, which returns the metadata for the dataset, or by viewing its 
path URL on a web browser to display the dataset information. The registered dataset can later be 
searched using the GEONsearch mechanism and used within the GEON workbench. 

 
 
 
Registrating Datasets Generated on the Fly. The following workflow is a combination of 
the above two models. It allows user triggered registration of datasets generated on the fly. The 
dataset image is displayed on a web browser using the BrowserUI actor and the user is prompted 
with a registeration query. The dataset is registered within the system according to user response. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Gravity Modeling Design Workflow. The following workflow is used to compare between 
synthetic and observed gravity models (see images below for more details). 
 
 
 

inside observed gravity model 



ROADNet Actors 
 
The ROADNet project (http://roadnet.ucsd.edu/) involves the creation of a universal 
network to carry multidomain sensor data from the field to the lab, where it can be easily archived 
and easily manipulated by scientists.  The infrastructure of the ROADNet project uses a package 
called Antelope developed by Boulder Real-Time Technologies (http://www.brtt.com/) 
that provides relational databases (via a library called Datascope) as well as network data 
concentrators called Orbs (object ring buffers).  An ORB in the ROADNet sense is completely 
distinct from an ORB in the CORBA sense.  Antelope ORBs act as sources (and sinks) for real-
time data, such as waveforms and events.  Some actors have been created to allow Kepler to 
participate in systems based on Antelope. 
 
Currently there are just a few actors for accessing Antelope ORBs.  In the future we will have 
actors to access Datascope databases as well, but first we need to invent the mechanism for 
accessing them remotely.  For an essay describing ORBs in abstract but technical terms, see 
http://splorg.org/people/tobin/kb/orb/orb.html. 
 
OrbWaveformSource: This actor connects to an ORB and requests waveform packets with 
sourcenames matching a configurable pattern.  The packets are “unstuffed” into waveform data, 
and the samples from this waveform data are send to the actor's “output” port as integer tokens. 
Multiplexed packets (which contain more than one channel of waveform data) are demultiplexed 
onto the corresponding channels of the connected Ptolemy relation.  Use the “multiplexor” actor 
to access a specific channel. 
 
Inputs: none 
 
Outputs:  
 output: integer  the actual sample values 
 times: double      the timestamps for each sample value 
 
bugs: waveform data is more-or-less meaningless before it is adjusted according to the calibration 
curve of the instrument that generated it.  There is currently no mechanism to do this, although it 
is a high priority to implement one. 
 
demos: see OrbModel.xml for a live demonstration! 
 
OrbWaveformSink:  This actor accepts waveform samples on its input port.  These are buffered 
until enough samples to form a packet are available (with the number of samples per packet a 
settable parameter).  Then the samples are packed up into an OrbPacket and sent to an ORB. 
 
inputs:  
 input:  integer  the actual sample values 
 times: double  timestamps for each sample 
 
outputs: none 
 
bugs: can only write “GEN” format packets, since that's all that com.brtt.antelope supports at the 
moment. 
 
OrbPacketObjectSource: This actor connects to an ORB and receives all packets corresponding 
to the given sourcename specification.  The Java-Antelope interface provides these packets as 
OrbPacket objects, and this actor provides these OrbPacket objects directly to Ptolemy, wrapped 



up in ObjectTokens.  Additionally, this actor will accept OrbPacket objects at its input port 
(again, wrapped in ObjectTokens), and these will be sent to the Orb. 
 
inputs:  
 input: ObjectToken(OrbPacket)  orb packets to be sent to the orbserver 
 
outputs:  
 output: ObjectToken(OrbPacket) orb packets reaped from the orbserver 
 
bugs: should be renamed, since it's both a source and a sink 
 
ObjectToRecord: ObjectToken provides a convenient mechanism for transporting arbitrary Java 
objects in Ptolemy.  However, it is inconvenient to manipulate these objects in any way, since 
they are essentially opaque objects from the point of view of Ptolemy.   However, Java objects 
are very similar in structure to Ptolemy's RecordTokens: both are essentially mappings between 
names and values.  Given an ObjectToken, this actor constructs a RecordToken containing a field 
for every field in the object contained in the ObjectToken, with the record field containing an 
ObjectToken wrapping the object pointed to by the corresponding field in the object.   This is 
accomplished using Java's introspection mechanism. 
 
inputs: 
 input: ObjectToken(Object) 
  
output: 
 output: RecordToken 
 
bugs: (1) because this actor translates an arbitrary object into a record, it cannot provide any 
information to the Ptolemy type system about what fields will be present in the resulting records. 
This makes its intended use with RecordDisassembler impossible.  (2) currently all fields in the 
generated records contain ObjectTokens.  However, it would make sense to turn java.lang.String's 
into StringTokens,  and similar for all of Java's simple types  (int, double, etc). (3) As 
implemented it will probably die if it encounteres a primitive type (eg, 'double' instead of 
'Double'). (4) It is almost completely untested. 


