Main Page   Groups   Namespace List   Class Hierarchy   Alphabetical List   Compound List   File List   Namespace Members   Compound Members   File Members   Concepts

itkTrainingFunctionBase.h

Go to the documentation of this file.
00001 /*=========================================================================
00002 
00003   Program:   Insight Segmentation & Registration Toolkit
00004   Module:    $RCSfile: itkTrainingFunctionBase.h,v $
00005   Language:  C++
00006   Date:      $Date: 2005/08/10 18:28:38 $
00007   Version:   $Revision: 1.4 $
00008 
00009   Copyright (c) Insight Software Consortium. All rights reserved.
00010   See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
00011 
00012      This software is distributed WITHOUT ANY WARRANTY; without even 
00013      the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
00014      PURPOSE.  See the above copyright notices for more information.
00015 
00016 =========================================================================*/
00017 
00018 #ifndef __itkTrainingFunctionBase_h
00019 #define __itkTrainingFunctionBase_h
00020 
00021 #include <iostream>
00022 #include "itkLightProcessObject.h"
00023 #include "itkNeuralNetworkObject.h"
00024 #include "itkSquaredDifferenceErrorFunction.h"
00025 #include "itkMeanSquaredErrorFunction.h"
00026 namespace itk
00027 {
00028 namespace Statistics
00029 {
00030 
00031 template<class TSample, class TOutput, class ScalarType>
00032 class TrainingFunctionBase : public LightProcessObject
00033 {
00034 public:
00035   typedef TrainingFunctionBase Self;
00036   typedef LightProcessObject Superclass;
00037   typedef SmartPointer<Self> Pointer;
00038   typedef SmartPointer<const Self> ConstPointer;
00039 
00041   itkTypeMacro(TrainingFunctionBase, LightProcessObject);
00042 
00044   itkNewMacro(Self);
00045 
00046   typedef typename TSample::MeasurementVectorType VectorType;
00047   typedef typename TOutput::MeasurementVectorType OutputVectorType;
00048 
00049   typedef std::vector<VectorType> InputSampleVectorType;
00050   typedef std::vector<OutputVectorType> OutputSampleVectorType;
00051   typedef ScalarType ValueType;
00052   typedef NeuralNetworkObject<VectorType, OutputVectorType> NetworkType;
00053   typedef ErrorFunctionBase<OutputVectorType, ScalarType> PerformanceFunctionType;
00054   typedef SquaredDifferenceErrorFunction<OutputVectorType, ScalarType> DefaultPerformanceType;
00055 
00056   void SetTrainingSamples(TSample* samples);
00057   void SetTargetValues(TOutput* targets);
00058   void SetLearningRate(ValueType);
00059 
00060   ValueType GetLearningRate();
00061 
00062   itkSetMacro(Iterations, long);
00063   itkGetConstReferenceMacro(Iterations, long);
00064 
00065   void SetPerformanceFunction(PerformanceFunctionType* f);
00066 
00067   virtual void
00068   Train(NetworkType* itkNotUsed(net), TSample* itkNotUsed(samples), TOutput* itkNotUsed(targets))
00069     {
00070     // not implemented
00071     };
00072 
00073   inline VectorType
00074   defaultconverter(typename TSample::MeasurementVectorType v)
00075     {
00076     VectorType temp;
00077     for (unsigned int i = 0; i < v.Size(); i++)
00078       {
00079       temp[i] = static_cast<ScalarType>(v[i]) ;
00080       }
00081     return temp;
00082     }
00083 
00084   inline OutputVectorType
00085   targetconverter(typename TOutput::MeasurementVectorType v)
00086     {
00087     OutputVectorType temp;
00088     for (unsigned int i = 0; i < v.Size(); i++)
00089       {
00090       temp[i] = static_cast<ScalarType>(v[i]) ;
00091       }
00092     return temp;
00093     }
00094 
00095 protected:
00096 
00097   TrainingFunctionBase();
00098   ~TrainingFunctionBase(){};
00099    
00101   virtual void PrintSelf( std::ostream& os, Indent indent ) const;
00102 
00103   TSample*                m_TrainingSamples;// original samples
00104   TOutput*                m_SampleTargets;  // original samples
00105   InputSampleVectorType   m_InputSamples;   // itk::vectors
00106   OutputSampleVectorType  m_Targets;        // itk::vectors
00107   long                    m_Iterations;    
00108   ValueType               m_LearningRate;
00109   typename PerformanceFunctionType::Pointer m_PerformanceFunction;
00110 };
00111 
00112 } // end namespace Statistics
00113 } // end namespace itk
00114 #ifndef ITK_MANUAL_INSTANTIATION
00115 #include "itkTrainingFunctionBase.txx"
00116 #endif
00117 
00118 #endif

Generated at Thu May 25 00:09:19 2006 for ITK by doxygen 1.3.5 written by Dimitri van Heesch, © 1997-2000